65 research outputs found

    Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens

    Get PDF
    Agrobacterium tumefaciens is a Gram-negative plant-pathogenic bacterium that causes crown gall disease by transferring and integrating its transferred DNA (T-DNA) into the host genome. We characterized the chromosomally encoded alpha-crystallin-type small heat-shock protein (α-Hsp) HspL, which was induced by the virulence (vir) gene inducer acetosyringone (AS). The transcription of hspL but not three other α-Hsp genes (hspC, hspAT1, hspAT2) was upregulated by AS. Further expression analysis in various vir mutants suggested that AS-induced hspL transcription is not directly activated by the VirG response regulator but rather depends on the expression of VirG-activated virB genes encoding components of the type IV secretion system (T4SS). Among the 11 virB genes encoded by the virB operon, HspL protein levels were reduced in strains with deletions of virB6, virB8 or virB11. VirB protein accumulation but not virB transcription levels were reduced in an hspL deletion mutant early after AS induction, implying that HspL may affect the stability of individual VirB proteins or of the T4S complex directly or indirectly. Tumorigenesis efficiency and the VirB/D4-mediated conjugal transfer of an IncQ plasmid RSF1010 derivative between A. tumefaciens strains were reduced in the absence of HspL. In conclusion, increased HspL abundance is triggered in response to certain VirB protein(s) and plays a role in optimal VirB protein accumulation, VirB/D4-mediated DNA transfer and tumorigenesis

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    The Perfect Garden

    No full text
    With hands-on work in the Chris Robb Garden, we researched what was the best method for preparing a proper organic garden. After the garden was created in 2012, Dr. Brunell and his students are still researching the best method for creating a productive, pesticide-free, all-natural garden that produces a variety of delicious, high-yield produce in addition to maintaining the soil’s health. To research the best method to maintain the garden, we first prepared the beds for plants. Cover crops, which were planted to naturally restore nutrients and nitrogen in the soil, were removed. Then, we turned the soil to aerate it and mixed it with chicken manure and an organic soil amender called Black Gold to add more nutrients back into the soil. After starting different plants from seeds, we transplanted these seedlings to the garden and planted them into six inch deep holes about four or eight inches apart. Drip tape was used as a watering system and covers were used in the winter to protect the plants from harsh weather. This semester we harvested a variety of vegetables in great abundance, some of which included kale, Asian greens, broccoli, lettuce, collard, cabbage, kohlrabi, and peas. To waste nothing in the garden, compost piles were made using plant waste that will break down and be used as new soil and nutrients for the beds. Our harvests have gone to the school’s Farmer’s Market and dining service, Bon Appetit, every Wednesday for students, faculty, and others to buy and enjoy

    The Perfect Garden

    No full text
    With hands-on work in the Chris Robb Garden, we researched what was the best method for preparing a proper organic garden. After the garden was created in 2012, Dr. Brunell and his students are still researching the best method for creating a productive, pesticide-free, all-natural garden that produces a variety of delicious, high-yield produce in addition to maintaining the soil’s health. To research the best method to maintain the garden, we first prepared the beds for plants. Cover crops, which were planted to naturally restore nutrients and nitrogen in the soil, were removed. Then, we turned the soil to aerate it and mixed it with chicken manure and an organic soil amender called Black Gold to add more nutrients back into the soil. After starting different plants from seeds, we transplanted these seedlings to the garden and planted them into six inch deep holes about four or eight inches apart. Drip tape was used as a watering system and covers were used in the winter to protect the plants from harsh weather. This semester we harvested a variety of vegetables in great abundance, some of which included kale, Asian greens, broccoli, lettuce, collard, cabbage, kohlrabi, and peas. To waste nothing in the garden, compost piles were made using plant waste that will break down and be used as new soil and nutrients for the beds. Our harvests have gone to the school’s Farmer’s Market and dining service, Bon Appetit, every Wednesday for students, faculty, and others to buy and enjoy

    ACTN4 Mediates SEPT14 Mutation-Induced Sperm Head Defects

    No full text
    Septins (SEPTs) are highly conserved GTP-binding proteins and the fourth component of the cytoskeleton. Polymerized SEPTs participate in the modulation of various cellular processes, such as cytokinesis, cell polarity, and membrane dynamics, through their interactions with microtubules, actin, and other cellular components. The main objective of this study was to dissect the molecular pathological mechanism of SEPT14 mutation-induced sperm head defects. To identify SEPT14 interactors, co-immunoprecipitation (co-IP) and nano-liquid chromatography-mass spectrometry/mass spectrometry were applied. Immunostaining showed that SEPT14 was significantly localized to the manchette structure. The SEPT14 interactors were identified and classified as (1) SEPT-, (2) microtubule-, (3) actin-, and (4) sperm structure-related proteins. One interactor, ACTN4, an actin-holding protein, was selected for further study. Co-IP experiments showed that SEPT14 interacts with ACTN4 in a male germ cell line. SEPT14 also co-localized with ACTN4 in the perinuclear and manchette regions of the sperm head in early elongating spermatids. In the cell model, mutated SEPT14 disturbed the localization pattern of ACTN4. In a clinical aspect, sperm with mutant SEPT14, SEPT14A123T (p.Ala123Thr), and SEPT14I333T (p.Ile333Thr), have mislocalized and fragmented ACTN4 signals. Sperm head defects in donors with SEPT14 mutations are caused by disruption of the functions of ACTN4 and actin during sperm head formation

    Localization Patterns of RAB3C Are Associated with Murine and Human Sperm Formation

    No full text
    Background and Objectives: Septins (SEPTs) are highly conserved GTP-binding proteins and the fourth component of the cytoskeleton. Polymerization of SEPTs contributes to several critical cellular processes such as cytokinesis, cytoskeletal remodeling, and vesicle transportation. In our previous study, we found that SEPT14 mutations resulted in teratozoospermia with >87% sperm morphological defects. SEPT14 interactors were also identified through proteomic assays, and one of the peptides was mapped to RAB3B and RAB3C. Most studies on the RAB3 family have focused on RAB3A, which regulates the exocytosis of neurotransmitters and acrosome reactions. However, the general expression and patterns of the RAB3 family members during human spermatogenesis, and the association between RAB3 and teratozoospermia owing to a SEPT14 mutation, are largely unknown. Materials and Methods: Human sperm and murine male germ cells were collected in this study and immunofluorescence analysis was applied on the collected sperm. Results: In this study, we observed that the RAB3C transcripts were more abundant than those of RAB3A, 3B, and 3D in human testicular tissues. During human spermatogenesis, the RAB3C protein is mainly enriched in elongated spermatids, and RAB3B is undetectable. In mature human spermatozoa, RAB3C is concentrated in the postacrosomal region, neck, and midpiece. The RAB3C signals were delocalized within human spermatozoa harboring the SEPT14 mutation, and the decreased signals were accompanied by a defective head and tail, compared with the healthy controls. To determine whether RAB3C is involved in the morphological formation of the head and tail of the sperm, we separated murine testicular tissue and isolated elongated spermatids for further study. We found that RAB3C is particularly expressed in the manchette structure, which assists sperm head shaping at the spermatid head, and is also localized at the sperm tail. Conclusions: Based on these results, we suggest that the localization of RAB3C proteins in murine and human sperm is associated with SEPT14 mutation-induced morphological defects in sperm

    Decreasing trend of kuroshio intrusion and its effect on the chlorophyll-a concentration in the Luzon Strait, South China Sea

    No full text
    Material exchange between oceans and currents is crucial for biogeochemical processes in marginal seas, such as the Kuroshio intrusion in the Luzon Strait, which contributes to nutrient and phytoplankton growth in the adjacent water. Therefore, it is necessary to understand changes in major current systems and their possible effects on marine ecology. In this study, we applied an edge-detection method to satellite-derived sea-surface temperature (SST) images to identify the SST front as the index of Kuroshio intrusion during 1985–2017. Chlorophyll-a (Chl-a) concentrations and geostrophic currents (determined from satellite observations after 1993) were examined by comparing long-term variations related to the Kuroshio front using empirical-mode decomposition analysis. The Kuroshio intrusion into the Luzon Strait gradually decreased after the 1990s, as did the Chl-a concentrations and current speed in the Strait. In contrast, the speed of the Kuroshio Current in the eastern Philippine tended to increase, indicating that the northward Kuroshio Current from the eastern Philippines became stronger, curtailing the westward intrusion of the branch current into the Luzon Strait. The speed of the Kuroshio Current correlated with the bifurcation of the North Equatorial Current (NEC), which is upstream of the Kuroshio Current starting from the southeast Philippines. Therefore, the NEC bifurcation latitude may have shifted more southward, which strengthened the water mass and current speed of the Kuroshio, resulting in decreased westward motion of the Kuroshio through the Luzon Strait. Consequently, the weakening Kuroshio intrusion may have caused a decreasing trend of biogeochemical processes in the South China Sea
    corecore