13,151 research outputs found

    Nonaxisymmetric Evolution of Magnetically Subcritical Clouds: Bar Growth, Core Elongation, and Binary Formation

    Get PDF
    We have begun a systematic numerical study of the nonlinear growth of nonaxisymmetric perturbations during the ambipolar diffusion-driven evolution of initially magnetically subcritical molecular clouds, with an eye on the formation of binaries, multiple stellar systems and small clusters. In this initial study, we focus on the m=2m=2 (or bar) mode, which is shown to be unstable during the dynamic collapse phase of cloud evolution after the central region has become magnetically supercritical. We find that, despite the presence of a strong magnetic field, the bar can grow fast enough that for a modest initial perturbation (at 5% level) a large aspect ratio is obtained during the isothermal phase of cloud collapse. The highly elongated bar is expected to fragment into small pieces during the subsequent adiabatic phase. Our calculations suggest that the strong magnetic fields observed in some star-forming clouds and envisioned in the standard picture of single star formation do not necessarily suppress bar growth and fragmentation; on the contrary, they may actually promote these processes, by allowing the clouds to have more than one (thermal) Jeans mass to begin with without collapsing promptly. Nonlinear growth of the bar mode in a direction perpendicular to the magnetic field, coupled with flattening along field lines, leads to the formation of supercritical cores that are triaxial in general. It removes a longstanding objection to the standard scenario of isolated star formation involving subcritical magnetic field and ambipolar diffusion based on the likely prolate shape inferred for dense cores. Continuted growth of the bar mode in already elongated starless cores, such as L1544, may lead to future binary and multiple star formation.Comment: 5 pages, 2 figures, accepted by ApJ

    Trauma-related psychological disorders among Palestinian children and adults in Gaza and West Bank, 2005-2008

    Get PDF
    BACKGROUND: Trauma from war and violence has led to psychological disorders in individuals living in the Gaza strip and West Bank. Few reports are available on the psychiatric disorders seen in children and adolescents or the treatment of affected populations. This study was conducted in order to describe the occurrence and treatment of psychiatric disorders in the Palestinian populations of the Gaza strip and Nablus district in the West Bank. METHODS: From 2005 to 2008, 1369 patients aged more than 1 year were identified through a local mental health and counseling health network. All were clinically assessed using a semi-structured interview based on the DSM-IV-TR criteria. RESULTS: Among 1254 patients, 23.2% reported post-traumatic stress disorder [PTSD], 17.3% anxiety disorder (other than PTSD or acute stress disorder), and 15.3% depression. PTSD was more frequently identified in children < or = 15 years old, while depression was the main symptom observed in adults. Among children < or = 15 years old, factors significantly associated with PTSD included being witness to murder or physical abuse, receiving threats, and property destruction or loss (p < 0.03). Psychological care, primarily in the form of individual, short-term psychotherapy, was provided to 65.1% of patients, with about 30.6% required psychotropic medication. Duration of therapy sessions was higher for children < or = 15 years old compared with adults (p = 0.05). Following psychotherapy, 79.0% had improved symptoms, and this improvement was significantly higher in children < or = 15 years old (82.8%) compared with adults (75.3%; p = 0.001). CONCLUSION: These observations suggest that short-term psychotherapy could be an effective treatment for specific psychiatric disorders occurring in vulnerable populations, including children, living in violent conflict zones, such as in Gaza strip and the West Bank

    Effects of ZbZ_b states and bottom meson loops on Υ(4S)Υ(1S,2S)π+π\Upsilon(4S) \to \Upsilon(1S,2S) \pi^+\pi^- transitions

    Full text link
    We study the dipion transitions Υ(4S)Υ(nS)π+π\Upsilon(4S) \rightarrow \Upsilon(nS) \pi^+\pi^- (n=1,2)(n=1,2). In particular, we consider the effects of the two intermediate bottomoniumlike exotic states Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650) as well as bottom meson loops. The strong pion-pion final-state interactions, especially including channel coupling to KKˉK\bar{K} in the SS-wave, are taken into account model-independently by using dispersion theory. Based on a nonrelativistic effective field theory we find that the contribution from the bottom meson loops is comparable to those from the chiral contact terms and the ZbZ_b-exchange terms. For the Υ(4S)Υ(2S)π+π\Upsilon(4S) \rightarrow \Upsilon(2S) \pi^+\pi^- decay, the result shows that including the effects of the ZbZ_b-exchange and the bottom meson loops can naturally reproduce the two-hump behavior of the ππ\pi\pi mass spectra. Future angular distribution data are decisive for the identification of different production mechanisms. For the Υ(4S)Υ(1S)π+π\Upsilon(4S) \rightarrow \Upsilon(1S) \pi^+\pi^- decay, we show that there is a narrow dip around 1 GeV in the ππ\pi\pi invariant mass distribution, caused by the final-state interactions. The distribution is clearly different from that in similar transitions from lower Υ\Upsilon states, and needs to be verified by future data with high statistics. Also we predict the decay width and the dikaon mass distribution of the Υ(4S)Υ(1S)K+K\Upsilon(4S) \rightarrow \Upsilon(1S) K^+ K^- process.Comment: 25 pages, 8 figures, predictions of the decay width and the dikaon mass distribution of the Υ(4S)Υ(1S)K+K\Upsilon(4S) \rightarrow \Upsilon(1S) K^+ K^- process added, more discussions adde

    Calculating the transfer function of noise removal by principal component analysis and application to AzTEC observations

    Get PDF
    Instruments using arrays of many bolometers have become increasingly common in the past decade. The maps produced by such instruments typically include the filtering effects of the instrument as well as those from subsequent steps performed in the reduction of the data. Therefore interpretation of the maps is dependent upon accurately calculating the transfer function of the chosen reduction technique on the signal of interest. Many of these instruments use non-linear and iterative techniques to reduce their data because such methods can offer improved signal-to-noise over those that are purely linear, particularly for signals at scales comparable to that subtended by the array. We discuss a general approach for measuring the transfer function of principal component analysis (PCA) on point sources that are small compared to the spatial extent seen by any single bolometer within the array. The results are applied to previously released AzTEC catalogues of the COSMOS, Lockman Hole, Subaru XMM-Newton Deep Field, GOODS-North and GOODS-South fields. Source flux density and noise estimates increase by roughly +10 per cent for fields observed while AzTEC was installed at the Atacama Submillimeter Telescope Experiment and +15-25 per cent while AzTEC was installed at the James Clerk Maxwell Telescope. Detection significance is, on average, unaffected by the revised technique. The revised photometry technique will be used in subsequent AzTEC releases.Comment: 14 pages, 4 figure

    The Bolocam 1.1 mm Lockman Hole Galaxy Survey: SHARC II 350 micron Photometry and Implications for Spectral Models, Dust Temperatures, and Redshift Estimation

    Get PDF
    We present 350 micron photometry of all 17 galaxy candidates in the Lockman Hole detected in a 1.1 mm Bolocam survey. Several of the galaxies were previously detected at 850 microns, at 1.2 mm, in the infrared by Spitzer, and in the radio. Nine of the Bolocam galaxy candidates were detected at 350 microns and two new candidates were serendipitously detected at 350 microns (bringing the total in the literature detected in this way to three). Five of the galaxies have published spectroscopic redshifts, enabling investigation of the implied temperature ranges and a comparison of photometric redshift techniques. Lambda = 350 microns lies near the spectral energy distribution peak for z = 2.5 thermally emitting galaxies. Thus, luminosities can be measured without extrapolating to the peak from detection wavelengths of lambda > 850 microns. Characteristically, the galaxy luminosities lie in the range 1.0 - 1.2 x 10^13 L_solar, with dust temperatures in the range of 40 K to 70 K, depending on the choice of spectral index and wavelength of unit optical depth. The implied dust masses are 3 - 5 x 10^8 M_solar. We find that the far-infrared to radio relation for star-forming ULIRGs systematically overpredicts the radio luminosities and overestimates redshifts on the order of Delta z ~ 1, whereas redshifts based on either on submillimeter data alone or the 1.6 micron stellar bump and PAH features are more accurate.Comment: In Press (to appear in Astrophysical Journal, ApJ 20 May 2006 v643 1) 47 pages, 10 figures, 4 table

    Magnetocentrifugal Winds in 3D: Nonaxisymmetric Steady State

    Full text link
    Outflows can be loaded and accelerated to high speeds along rapidly rotating, open magnetic field lines by centrifugal forces. Whether such magnetocentrifugally driven winds are stable is a longstanding theoretical problem. As a step towards addressing this problem, we perform the first large-scale 3D MHD simulations that extend to a distance 102\sim 10^2 times beyond the launching region, starting from steady 2D (axisymmetric) solutions. In an attempt to drive the wind unstable, we increase the mass loading on one half of the launching surface by a factor of 10\sqrt{10}, and reduce it by the same factor on the other half. The evolution of the perturbed wind is followed numerically. We find no evidence for any rapidly growing instability that could disrupt the wind during the launching and initial phase of propagation, even when the magnetic field of the magnetocentrifugal wind is toroidally dominated all the way to the launching surface. The strongly perturbed wind settles into a new steady state, with a highly asymmetric mass distribution. The distribution of magnetic field strength is, in contrast, much more symmetric. We discuss possible reasons for the apparent stability, including stabilization by an axial poloidal magnetic field, which is required to bend field lines away from the vertical direction and produce a magnetocentrifugal wind in the first place.Comment: 10 pages, 2 figures, accepted for publication in ApJ

    Calculations of polarizabilities and hyperpolarizabilities for the Be+^+ ion

    Get PDF
    The polarizabilities and hyperpolarizabilities of the Be+^+ ion in the 22S2^2S state and the 22P2^2P state are determined. Calculations are performed using two independent methods: i) variationally determined wave functions using Hylleraas basis set expansions and ii) single electron calculations utilizing a frozen-core Hamiltonian. The first few parameters in the long-range interaction potential between a Be+^+ ion and a H, He, or Li atom, and the leading parameters of the effective potential for the high-LL Rydberg states of beryllium were also computed. All the values reported are the results of calculations close to convergence. Comparisons are made with published results where available.Comment: 18 pp; added details to Sec. I

    Present and future evidence for evolving dark energy

    Get PDF
    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, LambdaCDM is currently favoured as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.Comment: 10 pages RevTex4, 3 figures included. Minor changes to match version accepted by PR
    corecore