35 research outputs found

    Effects of epicatechin, a crosslinking agent, on human dental pulp cells cultured in collagen scaffolds

    Get PDF
    Objective The purpose of this study was to investigate the biological effects of epicatechin (ECN), a crosslinking agent, on human dental pulp cells (hDPCs) cultured in collagen scaffolds. Material and Method To evaluate the effects of ECN on the proliferation of hDPCs, cell counting was performed using optical and fluorescent microscopy. Measurements of alkaline phosphatase (ALP) activity, alizarin red staining, and real-time polymerase chain reactions were performed to assess odontogenic differentiation. The compressive strength and setting time of collagen scaffolds containing ECN were measured. Differential scanning calorimetry was performed to analyze the thermal behavior of collagen in the presence of ECN. Results Epicatechin increased ALP activity, mineralized nodule formation, and the mRNA expression of dentin sialophosphoprotein (DSPP), a specific odontogenic-related marker. Furthermore, ECN upregulated the expression of DSPP in hDPCs cultured in collagen scaffolds. Epicatechin activated the extracellular signal-regulated kinase (ERK) and the treatment with an ERK inhibitor (U0126) blocked the expression of DSPP. The compressive strength was increased and the setting time was shortened in a dose-dependent manner. The number of cells cultured in the ECN-treated collagen scaffolds was significantly increased compared to the cells in the untreated control group. Conclusions Our results revealed that ECN promoted the proliferation and differentiation of hDPCs. Furthermore, the differentiation was regulated by the ERK signaling pathway. Changes in mechanical properties are related to cell fate, including proliferation and differentiation. Therefore, our study suggests the ECN treatment might be desirable for dentin-pulp complex regeneration

    Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics?

    No full text
    A multimodality approach was applied using four-dimensional flow magnetic resonance imaging (4D flow MRI), time-of-flight magnetic resonance angiography (TOF-MRA) signal intensity gradient (SIG), and computational fluid dynamics (CFD) to investigate the 3D blood flow characteristics and wall shear stress (WSS) of the cerebral arteries. TOF-MRA and 4D flow MRI were performed on the major cerebral arteries in 16 healthy volunteers (mean age 34.7 ± 7.6 years). The flow rate measured with 4D flow MRI in the internal carotid artery, middle cerebral artery, and anterior cerebral artery were 3.8, 2.5, and 1.2 mL/s, respectively. The 3D blood flow pattern obtained through CFD and 4D flow MRI on the cerebral arteries showed reasonable consensus. CFD delivered much greater resolution than 4D flow MRI. TOF-MRA SIG and CFD WSS of the major cerebral arteries showed reasonable consensus with the locations where the WSS was relatively high. However, the visualizations were very different between TOF-MRA SIG and CFD WSS at the internal carotid artery bifurcations, the anterior cerebral arteries, and the anterior communicating arteries. 4D flow MRI, TOF-MRA SIG, and CFD are complementary methods that can provide additional insight into the hemodynamics of the human cerebral artery

    Fabrication and operating characteristics of a flat tubular segmented-in-series solid oxide fuel cell unit bundle

    No full text
    A unit bundle of a flat tubular segmented-in-series (SIS)-solid oxide fuel cell (SOFC) for intermediate temperature (650-800 ??C) operation was fabricated and operated in this study. We fabricated flat tubular ceramic supports through an extrusion process and analyzed the basic properties of the flat tubular ceramic support: the visible microstructure, porosity, mechanical strength, and pore size distribution. After that, we manufactured a flat tubular SIS-SOFC single cell using screen printing and a vacuum slurry dip-coating method for the electrode/interconnect and electrolyte. In addition, to make a unit bundle for a flat tubular SIS-SOFC, five SIS-SOFC single cells with an effective electrode area of 0.8 cm2 were coated onto the surface of the prepared ceramic support and were connected in series using an Ag + glass interconnect between each single SIS-SOFC cell. The performance of the 5-cell unit bundle for a flat tubular SIS-SOFC in 3% humidified H2 and air at 800 ??C had a maximum power of 2.5 W.close0

    Effects of epicatechin, a crosslinking agent, on human dental pulp cells cultured in collagen scaffolds

    No full text
    ABSTRACT Objective The purpose of this study was to investigate the biological effects of epicatechin (ECN), a crosslinking agent, on human dental pulp cells (hDPCs) cultured in collagen scaffolds. Material and Method To evaluate the effects of ECN on the proliferation of hDPCs, cell counting was performed using optical and fluorescent microscopy. Measurements of alkaline phosphatase (ALP) activity, alizarin red staining, and real-time polymerase chain reactions were performed to assess odontogenic differentiation. The compressive strength and setting time of collagen scaffolds containing ECN were measured. Differential scanning calorimetry was performed to analyze the thermal behavior of collagen in the presence of ECN. Results Epicatechin increased ALP activity, mineralized nodule formation, and the mRNA expression of dentin sialophosphoprotein (DSPP), a specific odontogenic-related marker. Furthermore, ECN upregulated the expression of DSPP in hDPCs cultured in collagen scaffolds. Epicatechin activated the extracellular signal-regulated kinase (ERK) and the treatment with an ERK inhibitor (U0126) blocked the expression of DSPP. The compressive strength was increased and the setting time was shortened in a dose-dependent manner. The number of cells cultured in the ECN-treated collagen scaffolds was significantly increased compared to the cells in the untreated control group. Conclusions Our results revealed that ECN promoted the proliferation and differentiation of hDPCs. Furthermore, the differentiation was regulated by the ERK signaling pathway. Changes in mechanical properties are related to cell fate, including proliferation and differentiation. Therefore, our study suggests the ECN treatment might be desirable for dentin-pulp complex regeneration

    Effect of cathode geometry on the electrochemical performance of flat tubular segmented-in-series(SIS) solid oxide fuel cell

    No full text
    A flat tubular segmented in series (SIS)-SOFC was fabricated with variable cathode thicknesses and the performance characteristics were analyzed. Vacuum slurry dip coating and screen printing technique were employed to coat the NiO-Ce1ScSZ10 anode, Ce1ScSZ10 electrolyte, and La0.6Sr0.4Co0.2Fe0.8 cathode on the extruded 3YSZ ceramic support. A sub module consisting of 5-cell with a total active electrode area of 4cm2 was interconnected in series using Ag-glass composite. Electrochemical performance analysis was conducted between 600 and 800??C using 300CC/min. 3vol.% humidified hydrogen fuel and 1500CC/min. air as oxidant. The results obtained from electrochemical impedance spectroscopy and current-voltage polarization curves revealed a 57??m thick cathode layer as the optimum thickness. An application of LSCo as the cathode current collector on the surface of the cathode enhanced the performance by approximately 30% at 750??C. © 2015 Hydrogen Energy Publications, LLCclose0

    Oxyresveratrol Increases Energy Expenditure through Foxo3a-Mediated Ucp1 Induction in High-Fat-Diet-Induced Obese Mice

    No full text
    The phytochemical oxyresveratrol has been shown to exert diverse biological activities including prevention of obesity. However, the exact reason underlying the anti-obese effects of oxyresveratrol is not fully understood. Here, we investigated the effects and mechanism of oxyresveratrol in adipocytes and high-fat diet (HFD)-fed obese mice. Oxyresveratrol suppressed lipid accumulation and expression of adipocyte markers during the adipocyte differentiation of 3T3-L1 and C3H10T1/2 cells. Administration of oxyresveratrol in HFD-fed obese mice prevented body-weight gains, lowered adipose tissue weights, improved lipid profiles, and increased glucose tolerance. The anti-obese effects were linked to increases in energy expenditure and higher rectal temperatures without affecting food intake, fecal lipid content, and physical activity. The increased energy expenditure by oxyresveratrol was concordant with the induction of thermogenic genes including Ucp1, and the reduction of white adipocyte selective genes in adipose tissue. Furthermore, Foxo3a was identified as an oxyresveratrol-induced gene and it mimicked the effects of oxyresveratrol for induction of thermogenic genes and suppression of white adipocyte selective genes, suggesting the role of Foxo3a in oxyresveratrol-mediated anti-obese effects. Taken together, these data show that oxyresveratrol increases energy expenditure through the induction of thermogenic genes in adipose tissue and further implicates oxyresveratrol as an ingredient and Foxo3a as a molecular target for the development of functional foods in obesity and metabolic diseases

    Effect of diabetes on exosomal miRNA profile in patients with obesity

    No full text
    Introduction Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease. T2DM increases the risk of cardiovascular-related death. We investigated changes in circulating exosomal microRNA (miRNA) profiles in patients with DM with obesity compared with patients without DM with obesity.Research design and methods This prospective study involved 29 patients with obesity (patients without DM=16, patients with DM=13) and healthy volunteers (HVs) (n=18). We measured circulating levels of exosomal miRNAs by next-generation sequencing and compared miRNA levels across the three groups.Results The expression levels of 25 miRNAs (upregulated=14, downregulated=11) differed between patients with obesity with DM and patients with obesity without DM. Compared with HV, patients with DM with obesity had 53 dysregulated miRNAs. Additionally, moving stepwise from HV to patients with obesity without DM to patients with obesity with DM, there was a consistent increase in expression levels of miR-23a-5p and miR-6087 and a consistent decrease in expressions levels of miR-6751-3p.Conclusions Our data show that the exosomal miRNAs is altered by dysregulated glucose metabolism in patients with obesity. This circulating exosomal miRNA signature in patients with obesity with or without DM is a potential biomarker and therapeutic target in these patients
    corecore