9 research outputs found

    Tough Physical Double-Network Hydrogels Based on Amphiphilic Triblock Copolymers

    Get PDF
    A series of physical double-network hydrogels is synthesized based on an amphiphilic triblock copolymer. The gel, which contains strong hydrophobic domains and sacrificial dynamic bonds of hydrogen bonds, is stiff and tough, and even stiffens in concentrated saline solution. Furthermore, due to its supramolecular structure, the gel features improved self-healing and self-recovery abilities

    Tomato fruit material.

    No full text
    <p>A. Tomato Phenotypes. From left to right: ‘Black’, ‘White Beauty’, ‘Micro-Tom’ (from green stage to red stage) ‘Black’ and ‘White Beauty’ fruit fully ripens. For the 4 stages of ‘Micro-Tom’ shown, DPA (Day Post Anthesis) is 30~33 (green), 32~33 (yellow), 33~35 (orange), and 41~45 (red). B. Frozen sections of cuticle layers. From left to right: ‘Black’ mature stage, ‘White Beauty’ mature stage, ‘Micro-Tom’ (red maturity stage). The cuticle layers are found in the upper portion of each image. C. Electron microscopy of plastids in each tomato. Upper row shows Electron micrographs of plastids in each developmental stage of ‘Micro-Tom’. Lower row shows Electron micrographs of plastids in ‘Black’ and ‘White Beauty’ at mature stage. The bar in each figure represents the size scale for that figure. Red arrow shows membrane structures with high molecule density. Blue arrow shows crystal structure. Yellow arrow shows a whirled membrane structure.</p

    2D gel electrophoresis of chromoplast proteins in fruit cells of ‘Micro-Tom’ (Red), ‘Black’ and ‘White Beauty’.

    No full text
    <p>Using an 11 cm IPG DryStrip (pH4-7), 100 μg of solubilized proteins were separated. Two-dimensional gel electrophoresis was performed with 12% poly-Acrylamide gel (16 cm x 16 cm). Following electrophoresis, the gel was stained with Flamingo Fluorescent Gel Stain (BIO-RAD). A list of proteins numbered in Fig 5 can be found in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137266#pone.0137266.t001" target="_blank">Table 1</a>.</p

    Proteins of varying levels of accumulation in ‘Micro-Tom’ (Red), ‘Black’ and ‘White Beauty’.

    No full text
    <p>Enlarged images of 2D-PAGE results from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137266#pone.0137266.g005" target="_blank">Fig 5</a> that showed significant differences in protein accumulation. Protein spots of note are indicated with broken line circles. CHRC: ‘Micro-Tom’ spot16, ‘White Beauty’ spot16, HrBP1: ‘Micro-Tom’ spots17 and 18, ‘Black’ spot13, ‘White Beauty’ spot14, TIL: ‘Micro-Tom’ spots27 and 28, ‘Black’ spot 21, ‘White Beauty’ spot25.</p

    Cephalic hedgehog expression is regulated directly by Sox17 in endoderm development of Xenopus laevis

    No full text
    In early development of animals, hedgehog (Hh) genes function as morphogen in the axis determination and the organ formation. In Xenopus, three hedgehog genes, sonic (shh), banded (bhh), and cephalic (chh), were identified and might organize various tissues and organs in embryogenesis. Here, we report the spatial and temporal regulation of Xchh which is expressed in endoderm cells differentiating to digestive organs. Xchh expression in endoderm was inhibited by ectopic expression of the dominant-negative activin receptor, tAR. Moreover, a maternally inherited transcription factor VegT and its downstream regulators activated Xchh expression. These indicates that Xchh is regulated by the factor involved in the cascade originated from VegT via activin/nodal signals. Using the Sox17α-VP16-GR construct, we showed that Xchh expression might be induced directly by transcription factor Sox17
    corecore