10 research outputs found

    Cryogenic quasi-static embedded DRAM for energy-efficient compute-in-memory applications

    Full text link
    Compute-in-memory (CIM) presents an attractive approach for energy-efficient computing in data-intensive applications. However, the development of suitable memory designs to achieve high-performance CIM remains a challenging task. Here, we propose a cryogenic quasi-static embedded DRAM to address the logic-memory mismatch of CIM. Guided by the re-calibrated cryogenic device model, the designed four-transistor bit-cell achieves full-swing data storage, low power consumption, and extended retention time at cryogenic temperatures. Combined with the adoption of cryogenic write bitline biasing technique and readout circuitry optimization, our 4Kb cryogenic eDRAM chip demonstrates a 1.37×\times106^6 times improvement in retention time, while achieving a 75 times improvement in retention variability, compared to room-temperature operation. Moreover, it also achieves outstanding power performance with a retention power of 112 fW and a dynamic power of 108 μ\muW at 4.2 K, which can be further decreased by 7.1% and 13.6% using the dynamic voltage scaling technique. This work reveals the great potential of cryogenic CMOS for high-density data storage and lays a solid foundation for energy-efficient CIM implementations

    Interplay between moment-dependent and field-driven unidirectional magnetoresistance in CoFeB/InSb/CdTe heterostructures

    Full text link
    Magnetoresistance effects are crucial for understanding the charge/spin transport as well as propelling the advancement of spintronic applications. Here we report the coexistence of magnetic moment-dependent (MD) and magnetic field-driven (FD) unidirectional magnetoresistance (UMR) effects in CoFeB/InSb/CdTe heterostructures. The strong spin-orbital coupling of InSb and the matched impedance at the CoFeB/InSb interface warrant a distinct MD-UMR effect at room temperature, while the interaction between the in-plane magnetic field and the Rashba effect at the InSb/CdTe interface induces the marked FD-UMR signal that dominates the high-field region. Moreover, owning to the different spin transport mechanisms, these two types of nonreciprocal charge transport show opposite polarities with respect to the magnetic field direction, which further enable an effective phase modulation of the angular-dependent magnetoresistance. Besides, the demonstrations of both the tunable UMR response and two-terminal spin-orbit torque-driven magnetization switching validate our CoFeB/InSb/CdTe system as a suitable integrated building block for multifunctional spintronic device design

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Dynamic Speckle Illumination Digital Holographic Microscopy by Doubly Scattered System

    No full text
    The coherent noise always exists in digital holographic microscopy due to the laser source, degrading the image quality. A method of speckle suppression using the dynamic speckle illumination, produced by double-moving diffusers, is presented in digital holographic microscopy. The space–time correlation functions are theoretically analyzed from the statistics distribution in the doubly and singly scattered system, respectively. The configuration of double-moving diffusers is demonstrated to have better performance in speckle suppression compared with the single diffuser and moving-static double diffusers cases. The experiment results verify the feasibility of the approach. The presented approach only requires a single shot interferogram to realize the speckle reduction, accordingly it has the potential application in real-time measurement

    Synergistic Hypolipidemic Effects and Mechanisms of Phytochemicals: A Review

    No full text
    Hyperlipidemia, a chronic disorder of abnormal lipid metabolism, can induce obesity, diabetes, and cardiovascular and cerebrovascular diseases such as coronary heart disease, atherosclerosis, and hypertension. Increasing evidence indicates that phytochemicals may serve as a promising strategy for the prevention and management of hyperlipidemia and its complications. At the same time, the concept of synergistic hypolipidemic and its application in the food industry is rapidly increasing as a practical approach to preserve and improve the health-promoting effects of functional ingredients. The current review focuses on the effects of single phytochemicals on hyperlipidemia and its mechanisms. Due to the complexity of the lipid metabolism regulatory network, the synergistic regulation of different metabolic pathways or targets may be more effective than single pathways or targets in the treatment of hyperlipidemia. This review summarizes for the first time the synergistic hypolipidemic effects of different combinations of phytochemicals such as combinations of the same category of phytochemicals and combinations of different categories of phytochemicals. In addition, based on the different metabolic pathways or targets involved in synergistic effects, the possible mechanisms of synergistic hypolipidemic effects of the phytochemical combination are illustrated in this review. Hence, this review provides clues to boost more phytochemical synergistic hypolipidemic research and provides a theoretical basis for the development of phytochemicals with synergistic effects on hyperlipidemia and its complications

    Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke)

    No full text
    This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg2+) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content). The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg-1 mercury. The MDA (malondialdehyde) content increased whereas and the Pn (net photosynthetic rate), Fv∕Fm (the maximum quantum yield of PSII photochemistry) and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg-1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate—low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol

    Wafer-scale epitaxial growth of the thickness-controllable van der Waals ferromagnet CrTe2 for reliable magnetic memory applications

    No full text
    To harness the intriguing properties of two-dimensional van der Waals (vdW) ferromagnets (FMs) for versatile applications, the key challenge lies in the reliable material synthesis for scalable device production. Here, we demonstrate the epitaxial growth of single-crystalline 1T-CrTe2 thin films on 2-inch sapphire substrates. Benefiting from the uniform surface energy of the dangling bond-free Al2O3(0001) surface, the layer-by-layer vdW growth mode is observed right from the initial growth stage, which warrants precise control of the sample thickness and atomically smooth surface morphology across the entire wafer. Moreover, the presence of the Coulomb interaction at the CrTe2/Al2O3 interface serves as an effective tuning parameter to tailor the anomalous Hall response, and the structural optimization of the CrTe2-based spin-orbit torque device leads to a substantial switching power reduction by 54%. Our results may lay out a general framework for the design of energy-efficient spintronics based on configurable vdW FMs
    corecore