483 research outputs found

    One Venue, Two Conferences: The Separation of Chinese and American Citation Networks

    Full text link
    At NeurIPS, American and Chinese institutions cite papers from each other's regions substantially less than they cite endogamously. We build a citation graph to quantify this divide, compare it to European connectivity, and discuss the causes and consequences of the separation.Comment: Workshop on Cultures of AI and AI for Culture @ NeurIPS 202

    Targeting beclin1 as an adjunctive therapy against hiv using mannosylated polyethylenimine nanoparticles

    Get PDF
    Using nanoparticle-based RNA interference (RNAi), we have previously shown that silenc-ing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy of Beclin1 small interfering RNA (siBeclin1) as an adjunctive antiviral and anti-inflammatory therapy in myeloid human microglia and primary human astrocytes infected with HIV, both with and without exposure to combined antiretroviral (cART) drugs. To specifically target human microglia and human astrocytes, we used a nanoparticle (NP) comprised of linear cationic polyethylenimine (PEI) conjugated with mannose (Man) and encapsulated with siBeclin1. The target specificity of the PEI-Man NP was confirmed in vitro using human neuronal and glial cells transfected with the NP encapsulated with fluorescein isothiocyanate (FITC). PEI-Man-siBeclin1 NPs were intranasally deliv-ered to healthy C57BL/6 mice in order to report the biodistribution of siBeclin1 in different areas of the brain, measured using stem-loop RT-PCR. Postmortem brains recovered at 1–48 h post-treatment with the PEI-Man-siRNA NP showed no significant changes in the secretion of the chemokines regulated on activation, normal T cell expressed and secreted (RANTES) and monocyte chemotactic protein-1 (MCP-1) and showed significant decreases in the secretion of the cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) when compared to phosphate-buffered saline (PBS)-treated brains. Nissl staining showed minimal differences between the neuronal structures when compared to PBS-treated brains, which correlated with no adverse behavioral affects. To confirm the brain and peripheral organ distribution of PEI-siBeclin1 in living mice, we used the In vivo Imaging System (IVIS) and demonstrated a significant brain accumulation of siBeclin1 through intranasal administration

    Interaction of Follicle-Stimulating Hormone and Stem Cell Factor to Promote Primordial Follicle Assembly in the Chicken

    Get PDF
    Follicle-stimulating hormone (FSH) and KIT signaling are required for ovarian development. In this study the interactive effect of FSH and stem cell factor (SCF) on folliculogenesis was investigated in the chicken. Correlated changes between the FSH receptor and the expression of KIT signaling genes were seen to be involved in the formation of the chicken primordial follicles. Follicle-stimulating hormone and SCF displayed a reciprocal stimulating effect in the promotion of folliculogenesis involving elevated phosphorylation of mitogen-activated protein kinases (MAPK) and protein kinase B (AKT) proteins. Knockdown of c-KIT or SCF reduced the stimulatory effect of FSH on KIT signaling as well as upon MAPK and AKT phosphorylation. Treatment of FSH and SCF in combination enhanced ovarian cell proliferation and N-cadherin expression, but inhibited cell apoptosis and E-cadherin expression. Overall, the reciprocal stimulating effect of FSH and SCF in promoting chicken follicle assembly involving accelerated ovarian cell proliferation, N-cadherin expression, inhibited cell apoptosis, and E-cadherin expression is demonstrated

    Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice

    Get PDF
    Acyl-CoA oxidase 2 (Acox2) is an enzyme involved in peroxisomal bile acid synthesis and branched-chain fatty acid degradation. Acox2 knockout (−/−) mice spontaneously developed liver cancer with marked lymphocytic infiltrate. Tandem-affinity purification coupled with mass spectrometry analysis revealed that Acox2 interacted with methylcrotonoyl-CoA carboxylase followed by co-immunoprecipitation confirmation. Here we reported that non-histone lysine crotonylation (Kcr) levels were downregulated in Acox2 −/− mice livers. Interestingly, Kcr signals were concentrated in the nucleus of tumor cells but mostly located in the cytoplasm of adjacent normal liver cells of Acox2 −/− mice. Quantitative analysis of the global crotonylome further revealed that 54% (27/50) of downregulated non-histone Kcr sites were located in mitochondrial (11/50) and peroxisomal (17/50) enzymes including Ehhadh, Scp2, Hsd17b4, Crot, Etfa, Cpt1a, Eci1/2, Hadha, Etfdh, and Idh2. Subsequent site-directed mutagenesis and transcriptome analysis revealed that Ehhadh K 572 cr might have site-specific regulatory roles by downregulating TOP3B expression that lead to increased DNA damage in vitro. Our findings suggested Acox2 is a regulator of Kcr that might play critical role on hepatic metabolic homeostasis

    An AT-hook gene is required for palea formation and floral organ number control in rice

    Get PDF
    AbstractGrasses have highly specialized flowers and their outer floral organ identity remains unclear. In this study, we identified and characterized rice mutants that specifically disrupted the development of palea, one of the outer whorl floral organs. The depressed palea1 (dp1) mutants show a primary defect in the main structure of palea, implying that palea is a fusion between the main structure and marginal tissues on both sides. The sterile lemma at the palea side is occasionally elongated in dp1 mutants. In addition, we found a floral organ number increase in dp1 mutants at low penetration. Both the sterile lemma elongation and the floral organ number increase phenotype are enhanced by the mutation of an independent gene SMALL DEGENERATIVE PALEA1 (SDP1), whose single mutation causes reduced palea size. E function and presumable A function floral homeotic genes were found suppressed in the dp1–2 mutant. We identified the DP1 gene by map-based cloning and found it encodes a nuclear-localized AT-hook DNA binding protein, suggesting a grass-specific role of chromatin architecture modification in flower development. The DP1 enhancer SDP1 was also positional cloned, and was found identical to the recently reported RETARDED PALEA1 (REP1) gene encoding a TCP family transcription factor. We further found that SDP1/REP1 is downstreamly regulated by DP1
    • …
    corecore