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Grasses have highly specialized flowers and their outer floral organ identity remains unclear. In this study, we
identified and characterized rice mutants that specifically disrupted the development of palea, one of the
outer whorl floral organs. The depressed palea1 (dp1) mutants show a primary defect in the main structure of
palea, implying that palea is a fusion between the main structure and marginal tissues on both sides. The sterile
lemma at the palea side is occasionally elongated in dp1 mutants. In addition, we found a floral organ number
increase in dp1 mutants at low penetration. Both the sterile lemma elongation and the floral organ number
increase phenotype are enhanced by the mutation of an independent gene SMALL DEGENERATIVE PALEA1
(SDP1), whose single mutation causes reduced palea size. E function and presumable A function floral homeotic
geneswere found suppressed in the dp1–2mutant.We identified the DP1 gene bymap-based cloning and found
it encodes a nuclear-localized AT-hook DNA binding protein, suggesting a grass-specific role of chromatin
architecture modification in flower development. The DP1 enhancer SDP1 was also positional cloned, and was
found identical to the recently reported RETARDED PALEA1 (REP1) gene encoding a TCP family transcription
factor. We further found that SDP1/REP1 is downstreamly regulated by DP1.
rights reserved.
© 2011 Elsevier Inc. All rights reserved.
Introduction

Based on the studies of homeotic mutants in several eudicot species,
especially the model plant species Arabidopsis thaliana and Antirrhinum
majus, the ABC model was proposed to elucidate flower organ forma-
tion (Bowman et al., 1991; Coen and Meyerowitz, 1991). In this
model, three classes of genes, A, B and C, work in a combinatorial fash-
ion to confer organ identities of fourwhorls (Krizek and Fletcher, 2005).
Class A genes affect sepals and petals, class B genes affect petals and
stamens, and class C genes affect stamens and carpels. Another class
of genes (sometimes termed E function) genes, which are meristem
identity genes required to specify all four whorls, extends the model
(reviewed in Krizek and Fletcher, 2005). Further studies in other plant
species have demonstrated that the ABC model in general is applicable
to eudicots and monocots (Ambrose et al., 2000; Dreni et al., 2007;
Nagasawa et al., 2003; Yamaguchi and Hirano, 2006).
Monocots differ considerably from dicots in floral organ morpholo-
gy, especially for non-reproductive floral organs (Bommert et al.,
2005; Kellogg, 2001; Zanis, 2007). Poaceae, the grass family, as one of
the largest monocot families, have highly specialized flowers, whose
structural units are spikelets and florets. In rice, a spikelet is composed
of two rudimentary glumes, two sterile lemmas (also named empty
glumes), and a floret which consists of one lemma, one palea and two
lodicules at the outer whorls, and six stamens and one carpel at the
inner whorls (Bommert et al., 2005; Kater et al., 2006; Kellogg, 2001;
Kyozuka et al., 2000). Although the two lodicules have been proved to
be homologous to petals (Ambrose et al., 2000; Kang et al., 1998;
Nagasawa et al., 2003; Whipple et al., 2007; Xiao et al., 2003), views
on the specification and the equivalence of palea and lemma remain
controversial due to their confusing morphological characters. Initially,
palea has been considered as prophyll-like structure and lemma as a
bract-like structure (Bell and Bryan, 1991; Bell and Bryan, 2008;
Clifford, 1987; Kellogg, 2001; Zanis, 2007). Other researchers have sug-
gested that palea and lemma together are the equivalents of the eudicot
sepal (Ambrose et al., 2000; Kyozuka et al., 2000; Shinozuka et al.,
1999). The third view prefers that only the palea is equivalent to the
sepal of eudicot (Luo et al., 2005; Schmidt and Ambrose, 1998).

http://dx.doi.org/10.1016/j.ydbio.2011.08.023
mailto:lhzhu@genetics.ac.cn
http://dx.doi.org/10.1016/j.ydbio.2011.08.023
http://www.sciencedirect.com/science/journal/00121606


278 Y. Jin et al. / Developmental Biology 359 (2011) 277–288
Consistent with this controversy of sepal equivalent organ in rice and
other grasses, class A genes in rice remain difficult to determine. Similar
to rice, the maize outer whorl organ identity remains elusive that mo-
lecular dissection of regulatory pathways has just started (Thompson
et al., 2009; Whipple et al., 2010).

In order to understand the molecular regulation of rice outer floral
whorl development, we identified and characterized more palea
defective mutants. We isolated a new allele of our previously reported
palealess1 (pal1) mutant (Luo et al., 2005). We further found that the
classical rice mutant depressed palea1 (dp1) is allelic to the pal1
mutants, and the name dp1 is used thereafter. We identified another
palea deficient mutant small degenerative palea1 (sdp1). In addition to
palea defects,we found thatDP1 affects sterile lemma identity andfloral
meristem activity. Both functions were enhanced by SDP1. We identi-
fied DP1 and SDP1 by positional cloning and demonstrated that DP1
encodes an AT-hook protein with DNA binding activity and possible
chromatin state regulation ability. The Arabidopsis genes most closely
related to DP1 did not affect flower development (Xiao et al., 2009).
This may be attributed to potential functional divergence or gene dupli-
cation and function redundancy during evolution. We further revealed
that DP1 regulates floral organ identity and meristem activity through
mediating expression of floral E function genes OsMADS1, OsMADS6
and OsMADS17, and AP1-like gene OsMADS15. Thus, DP1 appears to be
a novel regulator of rice flower development, possibly via chromatin
architecture control.

Materials and methods

Plant materials

Four rice mutants, dp1–1, dp1–2/pal1, dp1–3 and sdp1/rep1–3 were
used in this study. The recessive mutant dp1–1, previously named dp1
(Iwata et al., 1984; Yoshimura et al., 1997), was in the japonica back-
ground, and was requested from the SHIGEN Oryzabase (http://www.
shigen.nig.ac.jp). The dp1–2 allele, previously reported as pal1, was a
spontaneousmutation in the indica subspecies SARIII-93-369 background
(Luo et al., 2005). An addition allele dp1–3 was obtained from anther
culture of autotetrapolyploid rice (Qin et al., 2005). The sdp1/rep1–3
mutant was obtained in plants derived from tissue culture in the japonica
subspecies Nipponbare. Corresponding cultivars were used as wild-type
strains for phenotype comparison. The rice strain Taipei 309 was used
for transformation unless otherwise specified. For all the observations in
this study, plants were grown from May to October in the farm field of
the Institute of Genetics and Developmental Biology, Chinese Academy
of Sciences in Beijing. Morphology observations were carried under a
stereomicroscope (SZX16, Olympus, Tokyo).

Scanning electron microscopy (SEM) observation

Samples were fixed in 2.5% glutaraldehyde solution. Fixed samples
were dehydrated with gradual ethanol series, dried by critical-point
drying method using liquid carbon dioxide (Model HCP-2, Hitachi,
Tokyo), gold-coated with an Edwards E-1010 ion sputter coater
(Hitachi, Tokyo), and then observed using a S-3000N variable pressure
scanning electron microscope (Hitachi, Tokyo).

Positional cloning

The dp1 locus was mapped by using an F2 population of dp1–2 and
Sheng47 (spp. indica). The locus was mapped to a region between
cleaved-amplified polymorphic sequence (CAPS) markers M4 and M6
on the short arm of chromosome 6 (Luo et al., 2005). We further devel-
oped two new CAPS markers M9 and dM1 in this region (Table S2) to
narrow the locus to a 10 kb region between M4 and dM1 (Fig. 6A).

The sdp1 locus was mapped by using an F2 population of sdp1 and
Minghui 63 (spp. indica). The locus was mapped to a 92 kb region
between two sequence-tagged site markers, S14533 and S14625
(Fig. S6).

Vector construction and plant transformation

Primer sequences used for vector construction are listed in Table S2
in the Supplementary data. For complementation of the dp1–2mutant,
a 9292 bp genomic fragment containing the entire DP1 coding
sequence, 5728 bp of the 5′ upstream region and 2577 bp of the 3′
downstream region was digested form PAC clone P0548D03, and
cloned into the pCAMBIA1300 vector to generate plasmid p1300-DP1.
For RNA interference analysis, a fragment of the DP1 cDNA
(864 bp–1276 bp of the coding region) was amplified and cloned into
pUCCRNAi vector by forward and reverse insertions. The entire frag-
ment was subcloned into pCAMBIA1300A under the rice ACTIN1
promoter. For pDP1::GUS and pDP1::DP1-GFP (green fluorescent pro-
tein), specific primers with suitable adaptors were designed to amplify
relative sequences (Table S2), and cloned into pCAMBIA1301 or
CAMV35S-sGFP(S65T)-Nos (Niwa et al., 1999), respectively. These
vectors were subsequently transformed into calli derived from mature
rice seeds through Agrobacterium-mediatedmethods (Hiei et al., 1994).

RT-PCR and quantitative real time PCR (qRT-PCR)

Total RNA was extracted using TRIZOL (Invitrogen, Carlsbad). The
RNA was pre-treated with RNase-free DNase I (Takara, Shiga), and
first-strand cDNAwas synthesized from 2 μg of total RNA using reverse
transcriptase (M-MLV, Promega, Madison). The reverse transcription
product was used for PCR with gene specific primers (Table S2). Rice
ACTIN1 was used as the internal reference. For qRT-PCR, SYBR Green I
was added to the reaction system and run on a Chromo 4 real-time
PCR detection system (Bio-Rad, Hercules) according to the manufac-
turer's instructions. Three replicates were carried out for each gene,
and each analysis was biologically repeated at least twice. Student's
t-test was used to determine significant changes (Pb0.05).

GUS Staining and GFP observation

GUS staining was performed as previously described (Jefferson,
1989). The construct DP1-GFP was used to transform rice plant or to
infiltrate tobacco leaf epidermic cells by Agrobacterium-mediated
methods (Sparkes et al., 2006). Tobacco leaf tissue with GFP fluores-
cence was directly immersed in DAPI (4,6-diamidino-2-phenylindole)
solution (1 μg/ml) for nuclear staining. GFP and DAPI fluorescence
was observed under a confocal fluorescence microscope (Olympus
FV500).

Electrophoretic mobility shift assay

The assay was performed as described previously (Yin et al., 2005).
Briefly, DP1 coding region was amplified (Table S2) and cloned into
pETMALc-H (Pryor and Leiting, 1997). The recombinant DP1-MBP
(Maltose binding protein) was purified from Escherichia coli using
HIS-Ni resin (GE Health, Piscataway). A random AT-rich oligo was
synthesized, annealed and labeled with [gamma-32P]-ATP and about
0.5 ng of probes was used for each binding assay (Matsushita et al.,
2007; Nieto-Sotelo et al., 1994). For competition experiment, excessive
unlabeled probes were added to the reactions with 50-fold molar ratios
compared to labeled probe.

RNA in situ hybridization

A gene-specific region of DP1 (645 bp–954 bp of the coding region)
(Table S2) and labeled using aDIG RNA labeling kit (Roche,Mannheim).
Samples were fixed in FAA (10% formaldehyde, 5% acetic acid, 47.5%
ethanol), dehydrated and embedded in Paraplast Plus (Sigma-Aldrich,
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St. Luis). Tissues were sliced into 8 μm sections using a microtome
(RM2135, Leica, Wetzlar) and affixed to Poly-Prep slides (Sigma-
Aldrich, St. Luis). Pretreatment of sections, hybridization and immuno-
logical detection was performed as described (Li et al., 2005).

Results

DP1 and SDP1 affect palea formation

In wild type rice flowers, the inner whorls, including a pistil, six
stamens, and two lodicules, are subtended by a palea and a lemma to
form a floret (Figs. 1A, B). A floret together with a pair of sterile lemmas
and a pair of rudimentary glumes, which subtend at the floret base,
constitute a spikelet.

To reveal themolecularmechanism regulating rice palea and lemma
development, we identified mutants with defect in palea morphology.
We obtained an additional allele dp1–3 from anther culture of autote-
trapolyploid rice for the previously reported recessive dp1–2/pal1 mu-
tant (Luo et al., 2005). An allelism test revealed that both mutants
were allelic to the classical mutant dp1–1 (previously described as
dp1). An independent recessive sdp1 mutant was obtained in plants
derived from tissue culture.
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Compared to wild type plants, dp1–2 showed normal vegetative
development and flowering time, as well as normal inflorescence
morphology. Flowers of dp1–2 displayed clear defects when compared
to wild type (Figs. 1A–D). In dp1–2 spikelets, the paleas degenerated
to two leaf-like organs residing beside the lodicules, but retain normal
lemmas and other floral organs, forming an open structurewith partial-
ly exposed inner organs (Figs. 1C–E, M). Spikelets of dp1–3 showed a
similar phenotype as dp1–2, whereas spikelets of dp1–1 exhibited an
obviously milder phenotype with most of flowers showing smaller
than normal paleas without extra leaf-like organs (Table 1).

To study the identity of the abnormal leaf-like organ pairs observed
in dp1–2 and dp1–3, we examined morphological differences in the
palea and lemma epidermal cells in these mutants and in the wild
type by SEM. In a wide type rice plant, the palea had distinctivemargin-
al tissue, which is absent in the lemma (Prasad and Vijayraghavan,
2003; Prasad et al., 2005; Yadav et al., 2007). This marginal region of
palea lacks epicuticular or silicified thickening, and differs from the
rest of palea with a unique smooth epidermis (Figs. 2A, B). By contrast,
the central region of palea shares similar cellular morphology with
lemma that both of them comprise regular epidermal bulges formed
by cuticular thickening (Fig. 2A). In dp1–2 flowers, the extra leaf-like
organ pairs beside lodicules showed a smooth epidermal surface similar
D E

J K

L

mrp

lo

mrp

lo

rp st

ov

ov

wer sl elongated
Twin-flower&
sl elongated

sl st ca

sl

ere separated to show inner organs. (C–E) Spikelets of dp1–2. (D) Lemmawas removed to
shown. (F) A spikelet of dp1–1with lemma removed. Mrp and crpwere indicated by blue
win-flower spikelets of dp1–2. (I) Four presumed mrps were presented in a twin-flower.
) or one ovary with three stigmas (L). (M) A schematic diagram of spikelet phenotypes of
. le, lemma; pa, palea; lo, lodicule; sl, sterile lemma; st, stamen; ov, ovule; ca, carpel; esl,
=1 mm.



Table 1
Proportions of the major flower phenotypes in mutants and transgenic plants.

dp1−2 dp1−3 dp1−1 sdp1/rep1−3 dp1−2 sdp1/rep1−3 DP1i−1 DP1i−2

Observation no. 183 136 158 840 115 137 138
Palealess 183

(100%)
136
(100%)

0 0 115
(100%)

0 124
(89.9%)

Small palea 0 0 158
(100%)

837
(99.6%)

0 89
(65.0%)

14
(10.1%)

Twin-flower 9
(4.9%)

9
(6.6%)

5
(3.2%)

3
(0.36%)

74
(64.3%)

22
(16.1%)

66
(47.8%)

Sterile lemma elongation 7
(3.8%)

11
(8.1%)

3
(1.9%)

0 98
(85.2%)

2
(1.5%)

3
(2.2%)
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to that of the wild type marginal region of palea (Figs. 2B–D). Together
with the shared position, the cellular morphology observations suggest
these leaf-like organ pairs are likely retained marginal regions of palea.
This notion is further supported by observations from dp1–1, the
weaker allele. In dp1–1 flowers, while paleas were repressed to a smal-
ler size (Fig. 1F), themarginal region of palea appeared to be unaffected,
which remained attached to the central region of palea. Instead, the
severely affected central region of palea accounted for the reduction
of palea size (Fig. 1F). Taken together, only the central region of palea
development, but not the marginal region of palea development, was
affected by the dp1mutation (Fig. 1M).

To further characterize the developmental defects of paleas in dp1
mutants, we examined early stages of spikelet development by SEM.
In awild type rice, the palea primordium is visible at stage Sp 4 between
the formation of the lemma primordium (Sp 3) and the formation of
lodicule and stamen primordia (Sp 5–6; Figs. 3A–C) (Ikeda et al.,
2004). In dp1–2, the formation of the palea primordium appeared to
be slightly delayed at stage Sp 4 (Fig. 3D). After that, the development
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course of palea primordium continued to be retarded or arrested
(Fig. 3E), leading to a palea rudiment covered by the expended sterile
lemma after stage Sp 7 (Fig. 3F).

Effects of sdp1 mutation were similarly restricted to the palea
development, with most flowers (N99%) showing small degenerative
paleas but normal lodicules and inner organs (Figs. 4A–C; Table 1).
DP1 and SDP1 affect sterile lemma identity on the palea side

In addition to palea development, we found that the sterile lemma
identity was affected by the dp1 mutation, albeit at a much lower
frequency. In a wild type rice spikelet, one fertile floret is subtended
by a pair of sterile lemmas (Figs. 1A, B), which have smooth epidermal
cells with no cuticular thickenings (Prasad et al., 2005). In contrast, we
observed elongation of the sterile lemma on the palea side in all three
dp1mutants at a frequency of 2–8% (Figs. 1G,M; Table 1). The elongated
sterile lemmas showed obvious epicuticular thickening without a
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smooth marginal region, suggesting that they might have acquired the
lemma identity (Fig. 2E).

We found that the overgrowth of sterile lemmas occurred earlier
during spikelet development. In some dp1-2 spikelets, sterile lemmas
at the palea side exhibited a similar height as lemmas as early as stage
Sp 6 (Fig. 3G). The growth rate of such elongated sterile lemmas was
comparable to the wild type paleas and lemmas (Figs. 3G, H).

The sterile lemma elongation phenotype was enhanced by the sdp1
mutation. Although no elongated sterile lemma was observed in sdp1
flowers as in any wild type ones (NN800, Table 1), most dp1–2 sdp1
double mutant flowers (N85%) contained elongated sterile lemmas
(Figs. 4D, E). Still, such elongated sterile lemmas were only found on
the adaxial side, where a palea would form in wild type spikelets.

DP1 and SDP1 affect floral organ number

In addition to affecting palea and sterile lemma development, both
DP1 and SDP1 genes regulate floral organ number at a low penetrance.
In dp1–2, ~5% spikelets, which we named “twin-flowers”, exhibited a
nearly closed structure with an additional lemma-like organ in place
of paleas (Figs. 1G, H,M). This lemma-like organ shared the samevascu-
lar number as that of a lemma, but different from a typical palea
(Figs. 2G, H). Such lemma-like organ does not contain the palea-specific
marginal region either (Fig. 2F). The presumably retained palea margin
pairs were also doubled in such twin-flowers (Fig. 1I). In the inner
whorls, the floral organ numbers were often near-doubled in twin-
flowers, including four lodicules, seven or eight stamens and two ova-
ries with four stigmas or one ovary with three stigmas (Figs. 1J–M).
The formation of two lemmas in such twin-flowers initiated early
during spikelet development as demonstrated by SEM observation
(Fig. 3I). Such twin-flower spikelets would lead to the formation of
two separate seeds or one conjoined seed containing two embryos
(Fig. S1). We found that the floral meristems of twin-flowers were
enlarged when compared to a wild type floral meristem (Fig. S2).
Similar twin-flower phenotype was identified in other dp1 alleles and
in sdp1 at low penetrance (Fig. 4K; Table 1).

Strikingly, the floral organ number increase (i.e. twin-flower
phenotype) was significantly enhanced in the dp1–2 sdp1 double
mutant. Like dp1–2, flowers of the dp1–2 sdp1 double mutant were
palea-less and failed to develop the central region of palea with
only palea margin pairs retained (Fig. 4F), which is different from
the small palea phenotype observed in sdp1. Notably, most dp1–2
sdp1 double mutant flowers (64%) exhibited increased floral organ
number. Such twin-flowers were almost identical to those observed
in the dp1–2 single mutant (Figs. 4G, H), although the frequency
was ~20 times higher. In addition to increased inner organ numbers
found in the twin-flowers, we observed more severely fused or undif-
ferentiated carpels and stigmas in b1% spikelets, in which degener-
ated ovule or undifferentiated cell mass could form (Figs. 4I, J).

DP1 affects the expression of E function genes and AP1 sub-family gene
OsMADS15

Since DP1 affects floral organ identity and development, as well as
floral organ number, we were curious if it regulates the expression of
genes known to affect floral development, most of which are MADS
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family transcription factors. To this end, we performed qRT-PCR to
quantify the expression of over a dozen genes in the wild type and the
dp1–2 mutant young inflorescences less than 1 cm, between 1 cm and
2 cm, and between 2 cm and 3 cm in length, in which floral organs
start to initiate. We studied putative B function genes (OsMADS2,
OsMADS4 and OsMADS16), C function genes (OsMADS3, OsMADS58
and DL), D function gene (OsMADS13), E function genes (OsMADS1,
OsMADS6, OsMADS7, OsMADS8 and OsMADS17), AP1/SQUA sub-family
genes (OsMADS14, OsMADS15 and OsMADS18), and CLV1-homolog
FON1 (Agrawal et al., 2005; Dreni et al., 2007; Kater et al., 2006; Kyo-
zuka et al., 2000; Li et al., 2010; Moon et al., 1999; Nagasawa et al.,
2003; Ohmori et al., 2009; Suzaki et al., 2004;Wang et al., 2010; Yama-
guchi et al., 2006). While most of these tested genes did not show con-
spicuous alteration in the dp1–2 mutant (PN0.05; Fig. 5A), E function
genes OsMADS1, OsMADS6 and OsMADS17, as well as OsMADS15 were
expressed at 30%–50% of wild type levels in the dp1–2 mutant
(Pb0.05 according to Student's t-test; Figs. 5B–E and S3A–D). Interest-
ingly, the expression patterns of OsMADS1 and OsMADS15 detected by
in situ hybridizationwere not altered in the dp1–2mutant (Fig. S3E), in-
dicating that DP1 gene positively enhanced OsMADS1 and OsMADS15
expression quantitatively but not qualitatively.
Map-based cloning of DP1 and SDP1 genes

To understand its molecular functions, we isolated the DP1 gene by
map-based cloning. We developed CAPS markers to map DP1 to a
10 kb region (Fig. 6A). Only one predicted coding sequence,
Os06g0136900, was annotated in the region according to the rice
genome database (http://rapdb.dna.affrc.go.jp/). Sequence analysis
identified a 6 bp deletion (366 nt to 371 nt) in dp1–1, two substitutions
(A62S and H288P), a 3 bp deletion (952 nt to 954 nt), and a 6 bp inser-
tion of two His after 39 nt in dp1–2, and a 51 bp deletion (396 nt to 446
nt) in dp1-3 in the coding region (Fig. 6B). In addition, we found several
polymorphism sites in the promoter region of dp1–2 (Table S1). We
introduced the Os06g0136900 genomic fragment with its 5728 bp 5′
upstream region and 2577 bp 3′ downstream region into dp1–2, and
found that the spikelets and floral organs were completely rescued to
thewild type shape in all ten independent transgenic lines we obtained
(Fig. 6C), indicating that Os06g0136900 is the DP1 gene.

The identity of the DP1 gene was also confirmed by silencing DP1
products using RNA interference. Six independent transgenic lines
transformedwith an inverted repeat containing a DP1 regionwere gen-
erated and named DP1i. All transgenic plants had similar phenotypes to

http://rapdb.dna.affrc.go.jp/
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dp1 mutants (Fig. 6E). Generally, flowers of DP1i looked all abnormal
from the overall view of the panicles (Fig. 6Ea). Several lines showed
no palea but two palea margins (Fig. 3Eb, e), and others had degenera-
tive palea (Fig. 3Ec, f). A significant number (N15%; Table 1) of flowers
presented as twin-flowers, which had four paleamargins and increased
number of stamens and carpels (Fig. 6Ed, g). In addition, the phenotypic
severities were well correlated with the DP1 expression levels in these
DP1i lines (Table 1; Figs. 6E, F). Notably, twin-flowers with increased
floral organ number occurred more frequently in DP1i lines than in
any dp1 mutant, accounting for 48% in the strong line DP1i-2 and
16.8% in the weak line DP1i-1 (Table 1). Again, this independent exper-
iment confirmed the identity of the DP1 gene.

In addition, we overexpressed DP1 in rice and obtained five trans-
genic lines. In tissue culture conditions, all DP1-overexpressing lines
were severe dwarfism with rolling leaves at seedling stages (Fig. S4).
We were unable to study the effects of DP1 overexpression on floral
organ development because all these DP1-overexpressing lines died
before floral transition.

We tested the transcript levels of DP1 in dp1mutants and wild type
spikelets by qRT-PCR. We found that the gene expression level signifi-
cantly reduced in dp1–2 but not obviously changed in dp1–1 or dp1–3
(Figs. 6D and S5A, B). Thus, the decreased expression in dp1–2 might
be attributed to the DNA sequence changes in the promoter region.
On the other hand, the different severity of dp1–1 and dp1–3 pheno-
types should be only caused by their respective defects in the DP1
protein, i.e. missing 17 aa and 2 aa respectively (Fig. 7A).

To elucidate the molecular function of SDP1, we again isolated the
gene using a map-based cloning strategy. Using a F2 population of
sdp1×cv. Minghui 63 (Oryza sativa spp. indica), SDP1 was in a 92 kb
region of chromosome 9, containing 11 annotated genes. By sequencing
each gene of this region in sdp1, we identified a 13 nt deletion corre-
spond to positions 111 to 123 of the annotated open reading frame in
Os09g24480 (Fig. S6). This gene was later reported as RETARDED
PALEA1 (REP1) (Yuan et al., 2009). We further carried out allele test
and confirmed that sdp1 is allelic to rep1–1, and renamed sdp1 as
rep1–3.

DP1 encodes an AT-hook protein

DP1 has no intron, and its full-length cDNA sequence reported by
KOME database (http://cdna01.dna.affrc.go.jp/cDNA/) encodes a puta-
tive protein of 328 amino acids with a 75 bp 5′-UTR (Untranslated
Region) and 214 bp 3′-UTR. The DP1 protein is a putative DNA binding
protein comprising a consensus AT-hook motif, RPRGRP, and a domain
of unknown function, DUF296 (Fig. 7A). A database search resulted in
the identification of 45 AT-hook genes in rice (http://rapdb.dna.affrc.
go.jp/) and 31 in Arabidopsis (http://www.arabidopsis.org/). Among
them, 22 rice and 21 Arabidopsis AT-hook genes encode proteins also
containing the DUF296 domain (Fig. S7A). Phylogenetic analysis identi-
fied one clade including DP1 and three other rice proteins and two
Arabidopsis proteins (Fig. S7A). Sequence alignment of these six
proteins indicated that they shared high homology mainly within the
AT-hook motif and the DUF296 domain (Fig. 7A). The 2 aa deletion of
the weak allele dp1–1 was located between the AT-hook motif and
the DUF296 domain, whereas the 17 aa deletion of the strongest allele
dp1–3 covered 12 aa of the DUF296 domain, indicating that DUF296
has an important function for DP1 (Fig. 7A). Other grasses also contain
genes with both the AT-hook motif and the DUF296 domain
(Fig. S7B). Notably, DP1 is closely related to the recently reported
BARREN STALK FASTIGIATE1 (BAF1 (Gallavotti et al., 2011).

http://cdna01.dna.affrc.go.jp/cDNA/
http://rapdb.dna.affrc.go.jp/
http://rapdb.dna.affrc.go.jp/
http://www.arabidopsis.org/
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Nuclear localization and DNA-binding activity of DP1

ManyAT-hookproteins have been shown to activate or repress tran-
scription ofmany genes by binding to AT-rich DNA sequences andmod-
ifying chromatin architecture (Aravind and Landsman, 1998; Nagano
et al., 2001). To examine if DP1 as a potential DNA-binding protein is
localized in the nucleus, a DP1-GFP fusion protein was transiently
expressed in tobacco leaf epidermis. As expected, we found that
DP1-GFP was predominantly localized to the nucleus as confirmed by
DAPI staining (Fig. 7B). This subcellular localization result was further
confirmed in transgenic rice plants overexpressing the DP1-GFP fusion
protein (Fig. 7B). We then conducted an electrophoretic mobility shift
assay using recombinant DP1 protein (DP1-MBP) to test whether the
DP1 protein can bind to an AT-rich sequence (Fig. 7C). The experiment
showed that DP1 was able to bind to AT probes, which were AT-rich
DNA fragments, and this bindingwas competed by unlabeled AT probes
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but not by the non-AT probes with low AT content (Fig. 7C). These
results suggested that DP1 is a nuclear localized AT-rich DNA binding
protein.

Temporal and spatial expression patterns of DP1

To gain more insight into the function of DP1, we examined the
expression patterns of DP1 using several approaches. First, qRT-PCR
revealed that DP1 was expressed universally in various tissues, includ-
ing leaf, root, culm and inflorescence (Fig. S5C). To more precisely
study the expression of DP1, a construct containing the DP1 5′ region
of approximately 2 kb fused to the GUS reporter gene, pDP1::GUS was
introduced into wild type rice. In eight independent lines of transgenic
rice plants with pDP1::GUS, GUS staining confirmed the qRT-PCR result
that DP1 is expressed universally in leaf, root, culm and spikelet
(Fig. S5D).

RNA in situ hybridization was further conducted to determine the
temporal and spatial expression patterns of DP1 during the flower
development process.DP1 expressionwas initially detected at the adax-
ial side of initiating panicle branchmeristems, i.e. boundaries between a
newly initiated panicle branchmeristem and the shoot apical meristem
(Figs. 8A, B).DP1 transcripts then appeared in the entirefloralmeristem
when the sterile lemmas initiated (Fig. 8C). After the floral meristem
began to differentiate, DP1 expression was specifically observed in the
palea primordia (Figs. 8D, E) and in developing palea (Fig. 8F). Finally,
after floral organ differentiation, the signals were diffused to inner
organs (Fig. 8G). We could barely detect DP1 expression in dp1–2 inflo-
rescences or spikelets (Figs. 8H–K), which is consistent with the very
low DP1 expression found by qRT-PCR (Figs. 6E and S5A, B).

DP1 is an upstream regulator of REP1/SDP1 expression

In order to discover the relationship between DP1 and REP1/SDP1,
we investigated the DP1 expression in young inflorescences (less than
1 cm) of sdp1/rep1–3, and REP1/SDP1 expression in young inflores-
cences of dp1–2 by qRT-PCR.WhileDP1 expression level showed incon-
spicuous change in sdp1/rep1–3 when compared to a wild type rice
(Fig. 8M), the expression of REP1/SDP1 was significantly decreased in
dp1–2 to about 20% that of wild type rice (Fig. 8L). Considering that
even the knock-out allele of rep1 has amuchmild retarded palea devel-
opment phenotype comparingwith dp1–2 (Yuan et al., 2009), it is likely
that DP1 acts upstream of REP1/SDP1 to regulate palea development.

Discussion

Flower development as amodel for developmental biology has been
extensively studied and the widely accepted ABC model successfully
explained the formation of fourfloralwhorls in a typicalflower. Grasses,
however, have highly specialized flowers and inflorescence structures,
making it difficult to interpret the floral development process using
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knowledge from other model species. In this study, we identified two
genes involved in rice palea and sterile lemma development, as well
as the floral organ number determinacy. We further found that one of
them, DP1 controls the expression of SDP1/REP1, the other gene we
cloned, as well as OsMADS1, OsMADS6, OsMADS17, and OsMADS15 to
exert its function.

Genetic control of palea formation

In this study, we studied the formation of palea, a grass-specific
outer whorl organ, by identifying two rice palea-defective mutants.
These two mutants specifically affect palea development, but not
lemma development, implied the existence of different genetics path-
ways controlling these two floral organs potentially in the same whorl
(Figs. 1, 4). Consistent with this idea, mutations of the AP1-like
OsMADS15 gene affects palea but not lemma, in addition to other devel-
opment process (Wang et al., 2010). Beside this palea specific pathway,
there appears to be another pathway affecting both palea and lemma. It
is not surprising that this pathway includes the SEP-likeOsMADS1 (Jeon
et al., 2000; Prasad et al., 2001, 2005). More recently, two other tran-
scription factors, DEGENRATED HULL1 (DH1), a LOB family transcription
factor gene, andOsSPL16were found affecting both palea formation and
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lemma formation (Li et al., 2008; Wang et al., 2011), although their
target genes remain to be identified. It is therefore likely that the forma-
tion of palea requires both an E-function like pathway including
OsMADS1, and possibly DH1 and OsSPL16, as well as a palea specific
pathway containing DP1, SDP1/REP1 and OsMADS15. It should be point-
ed out that this E-function may play a more important role in the outer
whorls as both palea and lemma are affected more by the mutation of
these genes. In fact, a novel grass-specific E-function has recently been
identified, which is exerted by AGL6-like MADS box genes (Li et al.,
2010; Ohmori et al., 2009; Reinheimer and Kellogg, 2009), which bias
more on the development of inner whorls.

Notably, all three genes specifically affecting palea formation, DP1,
SDP1/REP1 and OsMADS15, affect only the central region of palea but
not the marginal region of palea (Figs. 1–3) (Wang et al., 2010; Yuan
et al., 2009). These results imply that these two parts of a palea are
controlled by different genetic pathways, and that DP1, SDP1/REP1 and
OsMADS15 specifically regulate the development of the central region
of palea. Consistent with this idea that a palea is a fused organ with
different origins, it was recently reported that flowers specifically lose
the marginal region of palea but retain the central region of palea in
OsMADS6 defective mutants (Ohmori et al., 2009).

Grass leaf has similar separate origins for the marginal region and
the central region. At least a double mutant of themaize narrow sheath
(ns1 and ns2) genes has specific defects in the leafmargin region devel-
opment, which was caused by a failure of establishing the leaf margin
identity in corresponding meristematic domains (Nardmann et al.,
2004; Scanlon and Freeling, 1997; Scanlon et al., 1996). It is likely that
the marginal region and the central region of a grass organ originate
from different meristematic domains established early during organ
initiation.

In addition to affecting palea development, we found that both DP1
and SDP1/REP1 affected the identity of sterile lemma specifically on the
palea side, especially when both genes were mutated (Figs. 1, 2, 4).
Considering that rice flower, and other grass flower as well, shows
zygomorphic symmetry, especially in the outer whorls (Yuan et al.,
2009), both DP1 and SDP1/REP1 are likely downstream such signals
that they only affect one side of the zygomorphic symmetric floral
architecture of rice. A functionally related gene, OsMADS15, also affects
floral development asymmetrically, although its mutation does not
affect sterile lemma identity (Wang et al., 2010).

A possible effect of chromatin architecture modification on flower
development

In this study,we identified the causal gene for dp1mutants encoding
an AT-hook and DUF296 containing protein (Fig. 6). We further
demonstrated that DP1 is nuclear localized and can specifically bind to
an AT-rich DNA fragment (Fig. 7). Such AT-hook domain containing
proteins are known to co-regulate gene transcription throughmodifica-
tion of chromatin architecture (Lim et al., 2007; Thanos and Maniatis,
1992). It is therefore likely that DP1 also control chromatin architecture
to co-regulation the expression of a number of genes. Indeed, we found
that SDP1/REP1, OsMADS15 and OsMADS1 genes were all suppressed in
dp1 mutants (Fig. 5), suggesting that DP1 promotes the expression of
these genes. It remains unclear whether these transcriptional activa-
tions are direct or indirect.

Several related plant DUF296 domain-containing AT-hook proteins
have been reported (Fig. S7), and they regulate different physiological
processes including flowering, photomorphogenesis and leaf
senescence (Lim et al., 2007; Street et al., 2008; Weigel et al., 2000).
DP1 appears to be the first AT-hook and DUP296 containing protein
functioning in flower development. An extensively studied Arabidopsis
AT-hook protein, SPLAYED (SYD), was found a chromatin remodeler
that regulates the expression of a large number of genes, to exert its
function in floral transition, stem cell maintenance, and stress signaling
pathways (Kwon et al., 2005; Su et al., 2006; Wagner and Meyerowitz,
2002; Walley et al., 2008). Different from DP1 with one AT-hook motif
and a conserved DUF296, SYD contains a conserved ATPase domain
and two AT-hook motifs in its N-terminal region, making SYD only
distantly related to DP1. More recently, a maize AT-hook protein BAF1
was reported, which is required for maize ear formation, axillary meri-
stem initiation, and boundary region demarcation (Gallavotti et al.,
2011). Similar to DP1, BAF1 contains one AT-hook motif and a
DUF296 domain, which was also named the PPC domain. Our phyloge-
netic analysis revealed that BAF1 and DP1 are closely related and are
likely orthologs (Fig. S7B). Consistently, both DP1 and BAF1 function
in flower development, although specified to the formation of different
organs in rice and in maize.

Effects of DP1 and SDP1/REP1 on floral meristem activity

We found that the increased floral organ number phenotype of dp1
sdp1/rep1doublemutantwas very similar to those of fon1 and fon2/fon4
mutants (Fig. 4), indicating that the floral meristem is likely affected.
Also single mutants of either gene showed this “twin-flower” pheno-
type at low penetration (Table 1), the combination of both mutations
significantly enhanced the phenotype. In fon1 and fon2/fon4 mutants,
the floral meristem size are enlarged, which causes the increased floral
organ number (Chu et al., 2006; Suzaki et al., 2004, 2006). Consistently,
we found the floral meristem in twin-flowers of dp1-2 enlarged
(Fig. S2). FON1 and FON2/FON4 encode homologs of Arabidopsis CLV1
and CLV3 respectively. It is reasonable to speculate that DP1 and SDP1/
REP1 interplay with the WUS-CLV loop to control meristem activity. It
remains to be elucidated whether the expression of FON1 and FON2/
FON4 genes are suppressed by DP1 and SDP1/REP1, or OsWUS
expression is enhanced by DP1 and SDP1/REP1, or DP1 and SDP1/REP1
affects both parts simultaneously. Considering that several E function
genes are down-regulated in dp1mutants, it is possible that the reduced
E function is responsible, or at least related, to the enlarged floral
meristem seen in dp1 and dp1 sdp1/rep1 rice.
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