111 research outputs found
In Vivo Inhibitory Effect on the Biofilm Formation of Candida albicans by Liverwort Derived Riccardin D
Riccardin D, a macrocyclic bisbibenzyl isolated from Chinese liverwort Dumortiera hirsute, has been proved to have inhibitory effect on biofilms formation of Candida albicans in in vitro study. Our present study aims to investigate the in vivo effect and mechanisms of riccardin D against C. albicans biofilms when used alone or in combination with clinical using antifungal agent fluconazole. XTT reduction assay revealed riccardin D had both prophylactic and therapeutic effect against C. albicans biofilms formation in a dose-dependent manner when using a central venous catheter related infective animal model. Scanning electron microscope and laser confocal scanning microscope showed that the morphology of biofilms was altered remarkably after riccardin D treatment, especially hypha growth inhibition. To uncover the underlying molecular mechanisms, quantitative real-time RT-PCR was performed to observe the variation of related genes. The downregulation of hypha-specific genes such as ALS1, ALS3, ECE1, EFG1, HWP1 and CDC35 following riccardin D treatment suggested riccardin D inhibited the Ras-cAMP-Efg pathway to retard the hypha formation, then leading to the defect of biofilms maturation. Moreover, riccardin D displayed an increased antifungal activity when administered in combination with fluconazole. Our study provides a potential clinical application to eliminate the biofilms of relevant pathogens
Recommended from our members
Graphitic Carbon Nitride (C3N4) Reduces Cadmium and Arsenic Phytotoxicity and Accumulation in Rice (Oryza sativa L.)
The present study investigated the role of graphitic carbon nitride (C3N4) in alleviating cadmium (Cd)- and arsenic (As)-induced phytotoxicity to rice (Oryza sativa L.). A high-temperature pyrolysis was used to synthesize the C3N4, which was characterized by transmission electron microscopy, Fourier-transform infrared spectroscopy, and dynamic light scattering. Rice seedlings were exposed to C3N4 at 50 and 250 mg/L in half-strength Hoagland’s solution amended with or without 10 mg/L Cd or As for 14 days. Both Cd and As alone resulted in 26–38% and 49–56% decreases in rice root and shoot biomass, respectively. Exposure to 250 mg/L C3N4 alone increased the root and shoot fresh biomass by 17.5% and 25.9%, respectively. Upon coexposure, Cd + C3N4 and As + C3N4 alleviated the heavy metal-induced phytotoxicity and increased the fresh weight by 26–38% and 49–56%, respectively. Further, the addition of C3N4 decreased Cd and As accumulation in the roots by 32% and 25%, respectively, whereas the metal contents in the shoots were 30% lower in the presence of C3N4. Both As and Cd also significantly altered the macronutrient (K, P, Ca, S, and Mg) and micronutrient (Cu, Fe, Zn, and Mn) contents in rice, but these alterations were not evident in plants coexposed to C3N4. Random amplified polymorphic DNA analysis suggests that Cd significantly altered the genomic DNA of rice roots, while no difference was found in shoots. The presence of C3N4 controlled Cd and As uptake in rice by regulating transport-related genes. For example, the relative expression of the Cd transporter OsIRT1 in roots was upregulated by approximately threefold with metal exposure, but C3N4 coamendment lowered the expression. Similar results were evident in the expression of the As transporter OsNIP1;1 in roots. Overall, these findings facilitate the understanding of the underlying mechanisms by which carbon-based nanomaterials alleviate contaminant-induced phyto- and genotoxicity and may provide a new strategy for the reduction of heavy metal contamination in agriculture
Advancements in material removal mechanism and surface integrity of high speed metal cutting : a review
The research and application of high speed metal cutting (HSMC) is aimed at achieving higher productivity and improved surface quality. This paper reviews the advancements in HSMC with a focus on the material removal mechanism and machined surface integrity without considering the effect of cutting dynamics on the machining process. In addition, the variation of cutting force and cutting temperature as well as the tool wear behavior during HSMC are summarized. Through comparing with conventional machining (or called as normal speed machining), the advantages of HSMC are elaborated from the aspects of high material removal rate, good finished surface quality (except surface residual stress), low cutting force, and low cutting temperature. Meanwhile, the shortcomings of HSMC are presented from the aspects of high tool wear rate and tensile residual stress on finished surface. The variation of material dynamic properties at high cutting speeds is the underlying mechanism responsible for the transition of chip morphology and material removal mechanism. Less surface defects and lower surface roughness can be obtained at a specific range of high cutting speeds, which depends on the workpiece material and cutting conditions. The thorough review on pros and cons of HSMC can help to effectively utilize its advantages and circumvent its shortcomings. Furthermore, the challenges for advancing and future research directions of HSMC are highlighted. Particularly, to reveal the relationships among inherent attributes of workpiece materials, processing parameters during HSMC, and evolution of machined surface properties will be a potential breakthrough direction. Although the influence of cutting speed on the material removal mechanism and surface integrity has been studied extensively, it still requires more detailed investigations in the future with continuous increase in cutting speed and emergence of new engineering materials in industries
Post-treatment neutrophil-lymphocyte ratio independently predicts amputation in critical limb ischemia without operation
OBJECTIVES: Limited information is available concerning the post-treatment neutrophil-lymphocyte ratio in critical limb ischemia patients who receive conservative therapy. Accordingly, this study was designed to evaluate the predictive value of the post-treatment neutrophil-lymphocyte ratio in critical limb ischemia patients without surgery. METHOD: From January 2009 to January 2011, critical limb ischemia patients were admitted to a vascular center. The demographic data, patient histories, comorbidities and risk factors were documented, and the differential cell count was determined at admission and seven days later after conservative therapy. The cutoff value of the post-treatment neutrophil-lymphocyte ratio was determined by an ROC curve. Patients were divided into groups A and B according to the cutoff value. Amputation-free survival was compared between groups. Univariate and multivariate analyses were used to identify independent risk factors. RESULT: A total of 172 patients were identified with a mean age 71.98±10.09 years; among them, 122 were male. A value of 3.8 was identified as the cutoff value of the post-treatment neutrophil-lymphocyte ratio. Groups A (post-treatment neutrophil-lymphocyte ratio ≥3.8) and B (post-treatment neutrophil-lymphocyte rati
A Meta-Analysis of Array-CGH Studies Implicates Antiviral Immunity Pathways in the Development of Hepatocellular Carcinoma
BACKGROUND: The development and progression of hepatocellular carcinoma (HCC) is significantly correlated to the accumulation of genomic alterations. Array-based comparative genomic hybridization (array CGH) has been applied to a wide range of tumors including HCCs for the genome-wide high resolution screening of DNA copy number changes. However, the relevant chromosomal variations that play a central role in the development of HCC still are not fully elucidated.
METHODS: In present study, in order to further characterize the copy number alterations (CNAs) important to HCC development, we conducted a meta-analysis of four published independent array-CGH datasets including total 159 samples.
RESULTS: Eighty five significant gains (frequency ≥ 25%) were mostly mapped to five broad chromosomal regions including 1q, 6p, 8q, 17q and 20p, as well as two narrow regions 5p15.33 and 9q34.2-34.3. Eighty eight significant losses (frequency ≥ 25%) were most frequently present in 4q, 6q, 8p, 9p, 13q, 14q, 16q, and 17p. Significant correlations existed between chromosomal aberrations either located on the same chromosome or the different chromosomes. HCCs with different etiologies largely exhibited surprisingly similar profiles of chromosomal aberrations with only a few exceptions. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the genes affected by these chromosomal aberrations were significantly enriched in 31 canonical pathways with the highest enrichment observed for antiviral immunity pathways.
CONCLUSIONS: Taken together, our findings provide novel and important clues for the implications of antiviral immunity-related gene pathways in the pathogenesis and progression of HCC
Anti-Inflammatory Effects of 4-Methylcyclopentadecanone on Edema Models in Mice
The present study evaluated the anti-inflammatory effects of 4-methylcyclopentadecanone (4-MCPC) on edema models in mice and aimed to determine the safety of 4-MCPC after acute exposure. The acute toxicity of 4-MCPC was evaluated by oral administration to rats of single doses of 0, 5, 50, 500 and 5000 mg/kg. Toxic symptoms were observed for 14 days. The anti-inflammatory activity was evaluated in xylene-induced mouse ear edema and carrageenan-induced mouse paw edema. The animals were treated with 4-MCPC once every day for seven consecutive days. Edema index, % inhibition, IL-1β, TNF-α, PGE2 and MPO levels in paws were detected after the treatment with xylene or carrageenan. Our results indicated that the LD50 value of 4-MCPC in rats is greater than 5000 mg/kg. The ED50 of 4-MCPC in xylene-induced mouse ear edema model was 7.5 mg/kg. 4-MCPC (8 or 16 mg/kg) remarkably inhibited carrageenan-induced mouse paw edema. Further study revealed that 4-MCPC treatment also decreased IL-1β, TNF-α, PGE2 and MPO levels in mice paws. Intragastric administration of 4-MCPC exhibited more significant anti-inflammatory activity than muscone at a dose of 16 mg/kg. Taken together, our results suggest that 4-MCPC has potent anti-inflammatory activity and the mechanisms might be related to the decreases of the levels of IL-1β, TNF-α, PGE2 and MPO in inflamed paws
A Label-Free Fluorometric Glutathione Assay Based on a Conformational Switch of G-quadruplex
In this paper, a label-free fluorescent method for glutathione (GSH) detection based on a thioflavin T/G-quadruplex conformational switch is developed. The sensing assay is fabricated depending on the virtue of mercury ions to form a thymine–thymine mismatch, which collapses the distance between two ssDNA and directs the guanine-rich part to form an intra-strand asymmetric split G-quadruplex. The newly formed G-quadruplex efficiently reacts with thioflavin T and enhances the fluorescent intensity. In the presence of GSH, Hg2+ is absorbed, destroying the G-quadruplex formation with a significant decrease in fluorescence emission. The proposed fluorescent assay exhibits a linear range between 0.03–5 μM of GSH with a detection limit of 9.8 nM. Furthermore, the efficacy of this method is examined using human serum samples to detect GSH. Besides GSH, other amino acids are also investigated in standard samples, which display satisfactory sensitivity and selectivity. Above all, we develop a method with features including potentiality, facility, sensitivity, and selectivity for analyzing GSH for clinical diagnostics
Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals
Nanoparticles (NPs) have great potential for use in the fields of biomedicine, building materials, and environmental protection because of their antibacterial properties. However, there are few reports regarding the antifungal activities of NPs on plants. In this study, we evaluated the antifungal roles of NPs against Botrytis cinerea, which is a notorious worldwide fungal pathogen. Three common carbon nanomaterials, multi-walled carbon nanotubes, fullerene, and reduced graphene oxide, and three commercial metal oxidant NPs, copper oxide (CuO) NPs, ferric oxide (Fe2O3) NPs, and titanium oxides (TiO2) NPs, were independently added to water-agar plates at 50 and 200-mg/L concentrations. Detached rose petals were inoculated with spores of B. cinerea and co-cultured with each of the six nanomaterials. The sizes of the lesions on infected rose petals were measured at 72 h after inoculation, and the growth of fungi on the rose petals was observed by scanning electron microscopy. The six NPs inhibited the growth of B. cinerea, but different concentrations had different effects: 50 mg/L of fullerene and CuO NPs showed the strongest antifungal properties among the treatments, while 200 mg/L of CuO and Fe2O3 showed no significant antifungal activities. Thus, NPs may have antifungal activities that prevent B. cinerea infections in plants, and they could be used as antifungal agents during the growth and post-harvesting of roses and other flowers
- …