49 research outputs found

    Choroidal Folds in Acute-Stage Vogt-Koyanagi-Harada Disease Patients with Relatively Short Axial Length

    Get PDF
    Purpose: To report 2 cases of Vogt-Koyanagi-Harada disease accompanied by remarkable choroidal folds in the acute stage. The early indicator of recurrence in these 2 cases was the identification of choroidal folds by spectral-domain optical coherence tomography (SD-OCT). Case Reports: A 68-year-old woman (Case 1) presented with visual loss in both eyes. Funduscopic examination revealed optic disc swelling and serous retinal detachment in both eyes. SD-OCT revealed remarkable choroidal folds and serous retinal detachment. After the initiation of systemic steroid treatment, choroidal folds disappeared rapidly and the amount of serous retinal detachment reduced remarkably. Choroidal folds observed on SD-OCT were the early indicators of recurrence prior to the emergence of serous retinal detachment. A 62-year-old woman (Case 2) presented with bilateral blurred vision and metamorphopsia. SD-OCT showed remarkable choroidal folds and serous retinal detachment in both eyes. After the initiation of systemic steroid treatment, choroidal folds and serous retinal detachment disappeared. At the time of recurrence, choroidal folds were observed by OCT. Discussion: During monitoring of Vogt-Koyanagi-Harada disease treatment, choroidal folds could be an early sign of recurrence. When choroidal folds are observed and recognized as an early indicator of recurrence, a prompt increase in steroids can improve the patients’ prognosis. Finally, both cases presented here had relatively short axial lengths, and we speculate that a shortened axial length may be a cause of choroidal folds in the acute stage of the disease

    Novel and recurrent COMP gene variants in five Japanese patients with pseudoachondroplasia: skeletal changes from the neonatal to infantile periods

    Get PDF
    Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia caused by pathogenic variants of cartilage oligomeric matrix protein (COMP). Clinical symptoms of PSACH are characterized by growth disturbances after the first year of life. These disturbances lead to severe short stature with short limbs, brachydactyly, scoliosis, joint laxity, joint pain since childhood, and a normal face. Epimetaphyseal dysplasia, shortened long bones, and short metacarpals and phalanges are common findings on radiological examination. Additionally, anterior tonguing of the vertebral bodies in the lateral view is an important finding in childhood because it is specific to PSACH and normalizes with age. Here, we report five Japanese patients with PSACH, with one recurrent (p.Cys351Tyr) and four novel heterozygous pathogenic COMP variants (p.Asp437Tyr, p.Asp446Gly, p.Asp507Tyr, and p.Asp518Val). These five pathogenic variants were located in the calcium-binding type 3 (T3) repeats. In four of the novel variants, the affected amino acid was aspartic acid, which is abundant in each of the eight T3 repeats. We describe the radiological findings of these five patients. We also retrospectively analyzed the sequential changes in the vertebral body and epimetaphysis of the long bones from the neonatal to infantile periods in a patient with PSACH and congenital heart disease

    Generation of hypoimmunogenic induced pluripotent stem cells by CRISPR-Cas9 system and detailed evaluation for clinical application

    Get PDF
    In order to expand the promise of regenerative medicine using allogeneic induced pluripotent stem cells (iPSCs), precise and efficient genome editing of human leukocyte antigen (HLA) genes would be advantageous to minimize the immune rejection caused by mismatches of HLA type. However, clinical-grade genome editing of multiple HLA genes in human iPSC lines remains unexplored. Here, we optimized the protocol for good manufacturing practice (GMP)-compatible CRISPR-Cas9 genome editing to deplete the three gene locus (HLA-A, HLA-B, and CIITA genes) simultaneously in HLA homozygous iPSCs. The use of HLA homozygous iPSCs has one main advantage over heterozygous iPSCs for inducing biallelic knockout by a single gRNA. RNA-seq and flow cytometry analyses confirmed the successful depletion of HLAs, and lineage-specific differentiation into cardiomyocytes was verified. We also confirmed that the pluripotency of genome-edited iPSCs was successfully maintained by the three germ layers of differentiation. Moreover, whole-genome sequencing, karyotyping, and optical genome mapping analyses revealed no evident genomic abnormalities detected in some clones, whereas unexpected copy number losses, chromosomal translocations, and complex genomic rearrangements were observed in other clones. Our results indicate the importance of multidimensional analyses to ensure the safety and quality of the genome-edited cells. The manufacturing and assessment pipelines presented here will be the basis for clinical-grade genome editing of iPSCs

    IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages

    Get PDF
    <div><p>Interleukin (IL)-33 is an interleukin-1 like cytokine that enhances Th2 responses and mediates mucosal immunity and allergic inflammation but the mechanism regulating endogenous IL-33 production are still under investigation. In macrophages, lipopolysaccharide (LPS) administration resulted in marked induction of IL-33 mRNA that was blunted in macrophages from glutaredoxin-1 (Glrx) knockout mice and in RAW264.7 macrophages with Glrx knockdown by siRNA. Glutaredoxin-1 is a small cytosolic thioltransferase that controls a reversible protein thiol modification, S-glutationylation (protein-GSH adducts), thereby regulating redox signaling. In this study, we examined the mechanism of Glrx regulation of endogenous IL-33 induction in macrophages. Glrx knockdown resulted in impaired de-glutathionylation of TRAF6, which is required for TRAF6 activation, and inhibited downstream IKKβ and NF-κB activation. Inhibitors of NF-κB suppressed IL-33 induction and chromatin IP sequencing data analysis confirmed that IL-33 is an NF-κB-responsive gene. Since TRAF6-NF-κB activation is also essential for IL-33 signaling through its receptor, ST2L, we next tested the involvement of Glrx in exogenous IL-33 responses in RAW264.7 cells. Recombinant IL-33 (rIL-33) administration induced IL-33 mRNA expression in RAW264.7 macrophages, and this was inhibited by Glrx knockdown. Interestingly, rIL-33-induced IL-33 protein was identified as the 20 kDa cleaved form whereas LPS-induced IL-33 protein was identified as full-length IL-33, which may be less active than the cleaved form. In a clinically-relevant mouse model of asthma, intra-tracheal cockroach antigen treatment induced Glrx protein in wild type mouse lungs but Glrx induction was attenuated in IL-33 knockout mouse lungs, suggesting that IL-33 may regulate Glrx induction <i>in vivo</i> in response to allergen challenge. In summary, our data reveal a novel mechanism by which Glrx controls both LPS- and IL-33-mediated NF-κB activation leading to IL-33 production, and paracrine IL-33 can induce Glrx to further regulate inflammatory reactions.</p></div

    Hippocampal metabolism of amino acids by L-amino acid oxidase is involved in fear learning and memory

    Get PDF
    Amino acids participate directly and indirectly in many important biochemical functions in the brain. We focused on one amino acid metabolic enzyme, L-amino acid oxidase (LAO), and investigated the importance of LAO in brain function using LAO1 knockout (KO) mice. Compared to wild-type mice, LAO1 KO mice exhibited impaired fear learning and memory function in a passive avoidance test. This impairment in LAO1 KO mice coincided with significantly reduced hippocampal acetylcholine levels compared to wild-type mice, while treatment with donepezil, a reversible acetylcholine esterase inhibitor, inhibited this reduction. Metabolomic analysis revealed that knocking out LAO1 affected amino acid metabolism (mainly of phenylalanine [Phe]) in the hippocampus. Specifically, Phe levels were elevated in LAO1 KO mice, while phenylpyruvic acid (metabolite of Phe produced largely by LAO) levels were reduced. Moreover, knocking out LAO1 decreased hippocampal mRNA levels of pyruvate kinase, the enzymatic activity of which is known to be inhibited by Phe. Based on our findings, we propose that LAO1 KO mice exhibited impaired fear learning and memory owing to low hippocampal acetylcholine levels. Furthermore, we speculate that hippocampal Phe metabolism is an important physiological mechanism related to glycolysis and may underlie cognitive impairments, including those observed in Alzheimer’s disease

    Clinical implication of HLA class I expression in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human leukocyte antigen (HLA)-class I molecules on tumor cells have been regarded as crucial sites where cytotoxic T lymphocytes (CTL) can recognize tumor-specific antigens and are strongly associated with anti-tumor activity. However, the clinical impact of HLA class I expression in breast cancer has not been clarified.</p> <p>Methods</p> <p>A total of 212 breast cancer patients who received curative surgery from 1993 to 2003 were enrolled in the current study. HLA class I expression was examined immunohistochemically using an anti-HLA class I monoclonal antibody. The correlation between HLA class I positivity and clinical factors was analyzed.</p> <p>Results</p> <p>The downregulation of HLA class I expression in breast cancer was observed in 69 patients (32.5%). HLA class I downregulation was significantly associated with nodal involvement (p < 0.05), TNM stage (p < 0.05), lymphatic invasion (p < 0.01), and venous invasion (p < 0.05). Patients with preserved HLA class I had significantly better disease-free interval (DFI) than those with loss of HLA class I (p < 0.05). However, in multivariable analysis, HLA class I was not selected as one of the independent prognostic factors of disease-free interval.</p> <p>Conclusion</p> <p>The examination of HLA class I expression is useful for the prediction of tumor progression and recurrent risk of breast cancer via the antitumor immune system.</p

    TROP2 Expressed in the Trunk of the Ureteric Duct Regulates Branching Morphogenesis during Kidney Development

    Get PDF
    TROP2, a cell surface protein structurally related to EpCAM, is expressed in various carcinomas, though its function remains largely unknown. We examined the expression of TROP2 and EpCAM in fetal mouse tissues, and found distinct patterns in the ureteric bud of the fetal kidney, which forms a tree-like structure. The tip cells in the ureteric bud proliferate to form branches, whereas the trunk cells differentiate to form a polarized ductal structure. EpCAM was expressed throughout the ureteric bud, whereas TROP2 expression was strongest at the trunk but diminished towards the tips, indicating the distinct cell populations in the ureteric bud. The cells highly expressing TROP2 (TROP2high) were negative for Ki67, a proliferating cell marker, and TROP2 and collagen-I were co-localized to the basal membrane of the trunk cells. TROP2high cells isolated from the fetal kidney failed to attach and spread on collagen-coated plates. Using MDCK cells, a well-established model for studying the branching morphogenesis of the ureteric bud, TROP2 was shown to inhibit cell spreading and motility on collagen-coated plates, and also branching in collagen-gel cultures, which mimic the ureteric bud's microenvironment. These results together suggest that TROP2 modulates the interaction between the cells and matrix and regulates the formation of the ureteric duct by suppressing branching from the trunk during kidney development

    Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARγ by cyclic phosphatidic acid

    No full text
    Cyclic phosphatidic acid (1-acyl-2,3-cyclic-glycerophosphate, CPA), one of nature\u27s simplest phospholipids, is found in cells from slime mold to humans and has a largely unknown function. We find here that CPA is generated in mammalian cells in a stimulus-coupled manner by phospholipase D2 (PLD2) and binds to and inhibits the nuclear hormone receptor PPARγ with nanomolar affinity and high specificity through stabilizing its interaction with the corepressor SMRT. CPA production inhibits the PPARγ target-gene transcription that normally drives adipocytic differentiation of 3T3-L1 cells, lipid accumulation in RAW264.7 cells and primary mouse macrophages, and arterial wall remodeling in a rat model in vivo. Inhibition of PLD2 by shRNA, a dominant-negative mutant, or a small molecule inhibitor blocks CPA production and relieves PPARγ inhibition. We conclude that CPA is a second messenger and a physiological inhibitor of PPARγ, revealing that PPARγ is regulated by endogenous agonists as well as by antagonists. © 2010 Elsevier Inc
    corecore