147 research outputs found

    Improvement of Biocompatibility of Silicone Elastomer by Surface Modification

    Get PDF
    γ-Methacryloxypropyltrimethoxysilane (γ-MPS) was grafted to silicone due to emulsion polymerization to induce Si-OH groups, in order to provide silicone with bioactivity spontaneous deposition of apatite in body fluid and to improve cytocompatibility. Apatite deposited on the grafted silicone within 7 days of soaking in 1.5 times as concentrated as the Kokubo solution. Osteoblastic cells (MC3T3-E1) were cultured on the specimens up to 7 days. After 5 days of culture, the number of MC3T3-E1 cells on the grafted specimen was much greater than that on the original specimen. These results indicated that the biocompatibility of silicone elastomer was improved by the grafting γ-MPS

    Mutual Learning of Single- and Multi-Channel End-to-End Neural Diarization

    Full text link
    Due to the high performance of multi-channel speech processing, we can use the outputs from a multi-channel model as teacher labels when training a single-channel model with knowledge distillation. To the contrary, it is also known that single-channel speech data can benefit multi-channel models by mixing it with multi-channel speech data during training or by using it for model pretraining. This paper focuses on speaker diarization and proposes to conduct the above bi-directional knowledge transfer alternately. We first introduce an end-to-end neural diarization model that can handle both single- and multi-channel inputs. Using this model, we alternately conduct i) knowledge distillation from a multi-channel model to a single-channel model and ii) finetuning from the distilled single-channel model to a multi-channel model. Experimental results on two-speaker data show that the proposed method mutually improved single- and multi-channel speaker diarization performances.Comment: Accepted to IEEE SLT 202

    Quantum Phase Transition in Lattice Model of Unconventional Superconductors

    Full text link
    In this paper we shall introduce a lattice model of unconventional superconductors (SC) like d-wave SC in order to study quantum phase transition at vanishing temperature (TT). Finite-TT counterpart of the present model was proposed previously with which SC phase transition at finite TT was investigated. The present model is a noncompact U(1) lattice-gauge-Higgs model in which the Higgs boson, the Cooper-pair field, is put on lattice links in order to describe d-wave SC. We first derive the model from a microscopic Hamiltonian in the path-integral formalism and then study its phase structure by means of the Monte Carlo simulations. We calculate the specific heat, monopole densities and the magnetic penetration depth (the gauge-boson mass). We verified that the model exhibits a second-order phase transition from normal to SC phases. Behavior of the magnetic penetration depth is compared with that obtained in the previous analytical calculation using XY model in four dimensions. Besides the normal to SC phase transition, we also found that another second-order phase transition takes place within the SC phase in the present model. We discuss physical meaning of that phase transition.Comment: 12 pages, 10 figures, references added, some discussion on the results adde

    Higgs mechanism and superconductivity in U(1) lattice gauge theory with dual gauge fields

    Full text link
    We introduce a U(1) lattice gauge theory with dual gauge fields and study its phase structure. This system is motivated by unconventional superconductors like extended s-wave and d-wave superconductors in the strongly-correlated electron systems. In this theory, the "Cooper-pair" field is put on links of a cubic lattice due to strong on-site repulsion between electrons in contrast to the ordinary s-wave Cooper-pair field on sites. This Cooper-pair field behaves as a gauge field dual to the electromagnetic U(1) gauge field. By Monte Carlo simulations we study this lattice gauge model and find a first-order phase transition from the normal state to the Higgs (superconducting) state. Each gauge field works as a Higgs field for the other gauge field. This mechanism requires no scalar fields in contrast to the ordinary Higgs mechanism.Comment: 4 pages, 6 figure

    Autonomous, bidding, credible, decentralized, ethical, and funded (ABCDEF) publishing [version 2; peer review: 1 approved, 2 approved with reservations]

    Get PDF
    Scientists write research articles, process ethics reviews, evaluate proposals and research, and seek funding. Several strategies have been proposed to optimize these operations and to decentralize access to research resources and opportunities. For instance, we previously proposed the trinity review method, combining registered reports with financing and research ethics assessments. However, previously proposed systems have a number of shortcomings, including how to implement them, e.g., who manages them, how incentives for reviewers are paid, etc. Various solutions have been proposed to address these issues, employing methods based on blockchain technologies, called “decentralized science (DeSci)”. Decentralized approaches that exploit these developments offer potentially profound improvements to the troubled scientific ecosystem. Here, we propose a system that integrates ethics reviews, peer reviews, and funding in a decentralized manner, based on Web3 technology. This new method, named ABCDEF publishing, would enhance the speed, fairness, and transparency of scientific research and publishing
    corecore