157 research outputs found

    Developing a Teaching Plan for the Social Studies of a Junior High School Focused on Inquiring What is a Good Society : Based on the Learning Principles of the New Course of Studies.

    Get PDF
    本研究は,平成20年3月に改訂された中学校学習指導要領のもとでの中学校社会科の単元開発のあり方を,公民的分野の内容(4)-イ「よりよい社会を目指して」を取り上げて具体的に示そうとするものである。今回の学習指導要領改訂では,中学校社会科には目標レベルの変化はほとんど見られず,一見,改訂は小幅なものにとどまったかに思われる。しかしながら,内容を検討すると,地理,歴史,公民の三分野ともに学習原理に関わる大きな転換がなされていることが分かり,それを見逃すと改訂の本質は見えない。本研究では,新学 習指導要領の学習原理として特に注目されている探究活動の充実に焦点をしぼり,学習原理の転換がいかになされたかということに加えて,具体的にいかなる授業づくりが求められるかを事例に基づいて明らかにした

    The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity

    Get PDF
    Podoplanin (PDPN/Aggrus/T1α) binds to C-type lectin-like receptor-2 (CLEC-2) and induces platelet aggregation. PDPN is associated with malignant progression, tumor metastasis, and poor prognosis in several types of cancer. Although many anti-human PDPN (hPDPN) monoclonal antibodies (mAbs), such as D2-40 and NZ-1, have been established, these epitopes are limited to the platelet aggregation-stimulating (PLAG) domain (amino acids 29-54) of hPDPN. Recently, we developed a novel mouse anti-hPDPN mAb, LpMab-7, which is more sensitive than D2-40 and NZ-1, using the Cancer-specific mAb (CasMab) method. The epitope of LpMab-7 was shown to be entirely different from that of NZ-1, a neutralizing mAb against the PLAG domain according to an inhibition assay and lectin microarray analysis. In the present study, we produced a mouse-human chimeric anti-hPDPN mAb, chLpMab-7. ChLpMab-7 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore, chLpMab-7 inhibited the growth of hPDPN-expressing tumors in vivo. Although chLpMab-7 recognizes a non-PLAG domain of hPDPN, it suppressed the hematogenous metastasis of hPDPN-expressing tumors. These results indicated that chLpMab-7 suppressed tumor development and hematogenous metastasis in a neutralization-independent manner. In conclusion, hPDPN shows promise as a target in the development of a novel antibody-based therapy

    Chimeric Anti-PDPN Antibody ChLpMab-2

    Get PDF
    Human podoplanin (hPDPN ), a platelet aggregation‐inducing transmembrane glycoprotein, is expressed in different types of tumors, and it binds to C‐type lectin‐like receptor 2 (CLEC ‐2). The overexpression of hPDPN is involved in invasion and metastasis. Anti‐hPDPN monoclonal antibodies (mAbs) such as NZ ‐1 have shown antitumor and antimetastatic activities by binding to the platelet aggregation‐stimulating (PLAG ) domain of hPDPN . Recently, we developed a novel mouse anti‐hPDPN mAb, LpMab‐2, using the cancer‐specific mAb (CasMab) technology. In this study we developed chLpMab‐2, a human–mouse chimeric anti‐hPDPN antibody, derived from LpMab‐2. chLpMab‐2 was produced using fucosyltransferase 8‐knockout (KO ) Chinese hamster ovary (CHO )‐S cell lines. By flow cytometry, chLpMab‐2 reacted with hPDPN ‐expressing cancer cell lines including glioblastomas, mesotheliomas, and lung cancers. However, it showed low reaction with normal cell lines such as lymphatic endothelial and renal epithelial cells. Moreover, chLpMab‐2 exhibited high antibody‐dependent cellular cytotoxicity (ADCC ) against PDPN ‐expressing cells, despite its low complement‐dependent cytotoxicity. Furthermore, treatment with chLpMab‐2 abolished tumor growth in xenograft models of CHO /hPDPN , indicating that chLpMab‐2 suppressed tumor development via ADCC . In conclusion, chLpMab‐2 could be useful as a novel antibody‐based therapy against hPDPN ‐expressing tumors

    Anti-glycopeptide mAb LpMab-21 against Podoplanin

    Get PDF
    Human podoplanin (hPDPN), which binds to C‐type lectin‐like receptor‐2 (CLEC‐2), is involved in platelet aggregation and cancer metastasis. The expression of hPDPN in cancer cells or cancer‐associated fibroblasts indicates poor prognosis. Human lymphatic endothelial cells, lung‐type I alveolar cells, and renal glomerular epithelial cells express hPDPN. Although numerous monoclonal antibodies (mA bs) against hPDPN are available, they recognize peptide epitopes of hPDPN. Here, we generated a novel anti‐hPDPN mA b, LpMab‐21. To characterize the hPDPN epitope recognized by the LpMab‐21, we established glycan‐deficient CHO‐S and HEK‐293T cell lines, using the CRISPR/Cas9 or TALEN. Flow cytometric analysis revealed that the minimum hPDPN epitope, in which sialic acid is linked to Thr76, recognized by LpMab‐21 is Thr76–Arg79. LpMab‐21 detected hPDPN expression in glioblastoma, oral squamous carcinoma, and seminoma cells as well as in normal lymphatic endothelial cells. However, LpMab‐21 did not react with renal glomerular epithelial cells or lung type I alveolar cells, indicating that sialylation of hPDPN Thr76 is cell‐type‐specific. LpMab‐21 combined with other anti‐hPDPN antibodies that recognize different epitopes may therefore be useful for determining the physiological function of sialylated hPDPN

    The Effect of Changing the Contraction Mode During Resistance Training on mTORC1 Signaling and Muscle Protein Synthesis

    Get PDF
    Acute resistance exercise (RE) increases muscle protein synthesis (MPS) via activation of mechanistic target of rapamycin complex (mTORC), and chronic resistance exercise training (RT) results in skeletal muscle hypertrophy. Although MPS in response to RE is blunted over time during RT, no effective restorative strategy has been identified. Since eccentric muscle contraction (EC) has the potential to strongly stimulate mTORC1 activation and MPS, changing the muscle contraction mode to EC might maintain the MPS response to RE during chronic RT. Male rats were randomly divided into RE (1 bout of RE) and RT (13 bouts of RE) groups. Additionally, each group was subdivided into isometric contraction (IC) and EC subgroups. The RE groups performed acute, unilateral RE using IC or EC. The RT groups performed 12 bouts of unilateral RE using IC. For bout 13, the RT-IC subgroup performed a further IC bout, while the RT-EC subgroup changed to EC. All muscle contractions were induced by percutaneous electrical stimulation. Muscle samples were obtained at 6 h post exercise in all groups. After the 1st RE bout, the EC group showed significantly higher p70S6K Thr389 phosphorylation than the IC group. However, the phosphorylation of other mTORC1-associated proteins (4E-BP1 and ribosomal protein S6) and the MPS response did not differ between the contraction modes. After the 13th bout of RE, mTORC1 activation and the MPS response were significantly blunted as compared with the 1st bout of RE. Changing from IC to EC did not improve these responses. In conclusion, changing the contraction mode to EC does not reinvigorate the blunted mTORC1 activation and MPS in response to RE during chronic RT

    Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model

    Get PDF
    Pluripotent stem cell-derived cardiomyocytes show great promise in regenerating the heart after myocardial infarction; however, several uncertainties exist that must be addressed before clinical trials. One practical issue is graft survival following transplantation. Although a pro-survival cocktail with Matrigel has been shown to enhance graft survival, the use of Matrigel may not be clinically feasible. The purpose of this study was to test whether a hyaluronan-based hydrogel, HyStem, could be a substitute for Matrigel. Human induced pluripotent stem cell-derived cardiomyocytes diluted with HyStem alone, HyStem plus pro-survival factors, or a pro-survival cocktail with Matrigel (PSC/MG), were transplanted into a rat model of acute myocardial infarction. Histological analysis at 4 weeks post transplantation revealed that, among the three groups, recipients of PSC/MG showed the largest graft size. Additionally, the grafted cardiomyocytes in the recipients of PSC/MG had a more matured phenotype compared to those in the other two groups. These findings suggest that further studies will be required to enhance not only graft size, but also the maturation of grafted cardiomyocytes.ArticleScientific reports 7(1) : 8630-(2017)journal articl

    Filmless versus film-based systems in radiographic examination costs: an activity-based costing method

    Get PDF
    Background: Since the shift from a radiographic film-based system to that of a filmless system, the change in radiographic examination costs and costs structure have been undetermined. The activity-based costing (ABC) method measures the cost and performance of activities, resources, and cost objects. The purpose of this study is to identify the cost structure of a radiographic examination comparing a filmless system to that of a film-based system using the ABC method. Methods: We calculated the costs of radiographic examinations for both a filmless and a film-based system, and assessed the costs or cost components by simulating radiographic examinations in a health clinic. The cost objects of the radiographic examinations included lumbar (six views), knee (three views), wrist (two views), and other. Indirect costs were allocated to cost objects using the ABC method. Results: The costs of a radiographic examination using a filmless system are as follows: lumbar 2,085 yen; knee 1,599 yen; wrist 1,165 yen; and other 1,641 yen. The costs for a film-based system are: lumbar 3,407 yen; knee 2,257 yen; wrist 1,602 yen; and other 2,521 yen. The primary activities were "calling patient," "explanation of scan," " take photographs," and "aftercare" for both filmless and film-based systems. The cost of these activities cost represented 36.0% of the total cost for a filmless system and 23.6% of a film-based system. Conclusions: The costs of radiographic examinations using a filmless system and a film-based system were calculated using the ABC method. Our results provide clear evidence that the filmless system is more effective than the film-based system in providing greater value services directly to patients
    corecore