184 research outputs found

    Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model.

    Get PDF
    BackgroundToca 511 (vocimagene amiretrorepvec) is a retroviral replicating vector encoding an optimized yeast cytosine deaminase (CD). Tumor-selective expression of CD converts the prodrug, 5-fluorocytosine (5-FC), into the active chemotherapeutic, 5-fluorouracil (5-FU). This therapeutic approach is being tested in a randomized phase II/III trial in recurrent glioblastoma and anaplastic astrocytoma (NCT0241416). The aim of this study was to identify the immune cell subsets contributing to antitumor immune responses following treatment with 5-FC in Toca 511-expressing gliomas in a syngeneic mouse model.MethodsFlow cytometry was utilized to monitor and characterize the immune cell infiltrate in subcutaneous Tu-2449 gliomas in B6C3F1 mice treated with Toca 511 and 5-FC.ResultsTumor-bearing animals treated with Toca 511 and 5-FC display alterations in immune cell populations within the tumor that result in antitumor immune protection. Attenuated immune subsets were exclusive to immunosuppressive cells of myeloid origin. Depletion of immunosuppressive cells temporally preceded a second event which included expansion of T cells which were polarized away from Th2 and Th17 in the CD4+ T cell compartment with concomitant expansion of interferon gamma-expressing CD8+ T cells. Immune alterations correlated with clearance of Tu-2449 subcutaneous tumors and T cell-dependent protection from future tumor challenge.ConclusionsTreatment with Toca 511 and 5-FC has a concentrated effect at the site of the tumor which causes direct tumor cell death and alterations in immune cell infiltrate, resulting in a tumor microenvironment that is more permissive to establishment of a T cell mediated antitumor immune response

    Fertilization Recovery after Defective Sperm Cell Release in Arabidopsis

    Get PDF
    SummaryIn animal fertilization, multiple sperms typically arrive at an egg cell to “win the race” for fertilization. However, in flowering plants, only one of many pollen tubes, conveying plant sperm cells, usually arrives at each ovule that harbors an egg cell [1, 2]. Plant fertilization has thus been thought to depend on the fertility of a single pollen tube [1]. Here we report a fertilization recovery phenomenon in flowering plants that actively rescues the failure of fertilization of the first mutant pollen tube by attracting a second, functional pollen tube. Wild-type (WT) ovules of Arabidopsis thaliana frequently (∼80%) accepted two pollen tubes when entered by mutant pollen defective in gamete fertility. In typical flowering plants, two synergid cells on the side of the egg cell attract pollen tubes [3–5], one of which degenerates upon pollen tube discharge [3, 6]. By semi-in vitro live-cell imaging [7, 8] we observed that fertilization was rescued when the second synergid cell accepted a WT pollen tube. Our results suggest that flowering plants precisely control the number of pollen tubes that arrive at each ovule and employ a fertilization recovery mechanism to maximize the likelihood of successful seed set

    Retroviral replicating vector-mediated gene therapy achieves long-term control of tumor recurrence and leads to durable anticancer immunity.

    Get PDF
    BackgroundProdrug-activator gene therapy with Toca 511, a tumor-selective retroviral replicating vector (RRV) encoding yeast cytosine deaminase, is being evaluated in recurrent high-grade glioma patients. Nonlytic retroviral infection leads to permanent integration of RRV into the cancer cell genome, converting infected cancer cell and progeny into stable vector producer cells, enabling ongoing transduction and viral persistence within tumors. Cytosine deaminase in infected tumor cells converts the antifungal prodrug 5-fluorocytosine into the anticancer drug 5-fluorouracil, mediating local tumor destruction without significant systemic adverse effects.MethodsHere we investigated mechanisms underlying the therapeutic efficacy of this approach in orthotopic brain tumor models, employing both human glioma xenografts in immunodeficient hosts and syngeneic murine gliomas in immunocompetent hosts.ResultsIn both models, a single injection of replicating vector followed by prodrug administration achieved long-term survival benefit. In the immunodeficient model, tumors recurred repeatedly, but bioluminescence imaging of tumors enabled tailored scheduling of multicycle prodrug administration, continued control of disease burden, and long-term survival. In the immunocompetent model, complete loss of tumor signal was observed after only 1-2 cycles of prodrug, followed by long-term survival without recurrence for >300 days despite discontinuation of prodrug. Long-term survivors rejected challenge with uninfected glioma cells, indicating immunological responses against native tumor antigens, and immune cell depletion showed a critical role for CD4+ T cells.ConclusionThese results support dual mechanisms of action contributing to the efficacy of RRV-mediated prodrug-activator gene therapy: long-term tumor control by prodrug conversion-mediated cytoreduction, and induction of antitumor immunity

    プラスミド性キノロン耐性遺伝子を保有するIMP-6産生腸内細菌科細菌でのイノカラムサイズ効果の比較

    Get PDF
    Almost all cases of carbapenemase-producing Enterobacteriaceae infections in Japan are caused by blaIMP-positive Enterobacteriaceae (especially blaIMP-6) and infections caused by other types of carbapenemase-producing Enterobacteriaceae are quite rare. We examined drug resistance genes co-harboring with blaIMP-6 and their inoculum size effects. We screened β-lactamase genes, plasmid-mediated quinolone resistance (PMQR) genes, and aminoglycoside-modifying enzyme genes by PCR and performed sequencing for 14 blaIMP-6-positive Enterobacteriaceae. Further, all PMQR-positive isolates were submitted to conjugation and inoculum effect evaluation. Our data showed that 13 of the 14 isolates harbored CTX-M-2 and one co-harbored CTX-M-2 and CTX-M-1 as extended-spectrum β-lactamases. All isolates carried one or more PMQRs; aac(6’)-Ib-cr was the most prevalent (92.8%), and was followed by oqxA (64.3%), qnrS (50%), oqxAB (21.4%), and qnrB (14.3%). However, Klebsiella pneumoniae contains chromosomal OqxAB. Inoculum size effects were significant in all strains for meropenem, 13 strains for imipenem, 7 for levofloxacin, and 3 for amikacin. We observed that 11 of the experimental strains (100%), 8 strains (72.7%), and 1 strain showed inoculum size effects for meropenem, imipenem, and amikacin, respectively. However, four strains harbored qnr genes and two strains harbored qnr genes and QRDR mutations concurrently; no inoculum size effect was seen for levofloxacin. The blaIMP-6-positive Enterobacteriaceae that we studied was found to harbor at least one plasmid-mediated drug resistance gene. The inoculum size effect for carbapenems was thought to be mainly due to IMP-6-type metallo-β-lactamase; however qnrB and qnrS also had a minimal impact on the inoculum size effect for levofloxacin.博士(医学)・乙第1463号・令和2年6月30日Copyright: © 2019 Ogawa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    奈良における侵襲性GBS感染症における臨床的特徴と分子疫学的特徴(2007~2016年)

    Get PDF
    Invasive Streptococcus agalactiae (GBS) infections are increasingly common among neonates and the elderly. Therefore, GBS surveillance for better antibiotic treatment and prophylaxis strategies are needed. We retrospectively evaluated the clinical aspects of invasive infections and the phenotypic and genetic diversity of infectious isolates from Nara, Japan, collected between 2007 and 2016, by using information from hospital records. GBS strains collected from the blood and cerebrospinal fluid cultures were evaluated for capsular types, multi-locus sequence typing (MLST), antibiotic susceptibility, antibiotics resistance gene, and pulsed-field gel electrophoresis. Forty GBS isolates (10 from children and 30 from adults) were analyzed, and the distribution of molecular serotype and allelic profiles varied between children and adults. We found the rates of early-onset disease in neonates with birth complications to be higher than that of previous reports, indicating that there could be relevance between complications at birth and early-onset disease. Standard antibiotic prophylaxis strategies may need to be reconsidered in patients with birth complications. In adults, the mean age of the patients was 68 years (male: 63%). Primary bacteremia was the most common source of infection. In the neonates, six had early-onset diseases and four had late-onset diseases. The most frequently identified strains were molecular serotype Ia ST23 (40%) and molecular serotype Ib ST10 (20%) in children and molecular serotype Ib ST10 (17%), molecular serotype VI ST1 (13%), and molecular serotype V ST1 (13%) in adults. Levofloxacin-resistant molecular serotype Ib strains and molecular serotypes V and VI ST1 were common causes of GBS infection in adults but were rarely found in children. Furthermore, pulsed-field gel electrophoresis in our study showed that specific clone isolates, that tend to have antibiotics resistance were widespread horizontally for a decade. Continuous surveillance and molecular investigation are warranted to identify the transmission route and improve antibiotic treatment strategies.博士(医学)・甲第773号・令和3年3月15日Copyright: © 2020 Hirai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    柿タンニンは新型コロナウイルスに対する抗ウイルス効果を持ち、シリアンハムスターモデルにおける新型コロナウイルス感染症の重症度および感染伝播を抑制する

    Get PDF
    Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the world. Inactivating the virus in saliva and the oral cavity represents a reasonable approach to prevent human-to-human transmission because the virus is easily transmitted through oral routes by dispersed saliva. Persimmon-derived tannin is a condensed type of tannin that has strong antioxidant and antimicrobial activity. In this study, we investigated the antiviral effects of persimmon-derived tannin against SARS-CoV-2 in both in vitro and in vivo models. We found that persimmon-derived tannin suppressed SARS-CoV-2 titers measured by plaque assay in vitro in a dose- and time-dependent manner. We then created a Syrian hamster model by inoculating SARS-CoV-2 into hamsters' mouths. Oral administration of persimmon-derived tannin dissolved in carboxymethyl cellulose before virus inoculation dramatically reduced the severity of pneumonia with lower virus titers compared with a control group inoculated with carboxymethyl cellulose alone. In addition, pre-administration of tannin to uninfected hamsters reduced hamster-to-hamster transmission of SARS-CoV-2 from a cohoused, infected donor cage mate. These data suggest that oral administration of persimmon-derived tannin may help reduce the severity of SARS-CoV-2 infection and transmission of the virus.博士(医学)・甲第817号・令和4年3月15日© 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

    本邦で分離されたカルバペネマーゼ産生肺炎桿菌の分子遺伝学的解析

    Get PDF
    Carbapenemase-producing Enterobacteriaceae represent a serious public health threat worldwide. Carbapenemase genes, harbored on a transferable plasmid, have been isolated globally with distinct geographical features. Klebsiella pneumoniae, included in Enterobacteriaceae, also produces carbapenemase and often shows hypervirulence. Overlapping carbapenem resistance and hypervirulence in K. pneumoniae have been reported, but such strains have not yet been found in Japan. Here, we screened 104 carbapenemase-producing K. pneumoniae isolates collected from 37 hospitals and outpatient clinics in Japan between September 2014 and July 2015. PCR and DNA sequencing demonstrated IMP-1 in 21 isolates and IMP-6 in 83 isolates, 77 of which coharbored CTX-M-2. Most of the isolates showed low MICs toward imipenem and meropenem but high MICs toward penicillin and cephalosporins. Conjugation experiments with an Escherichia coli J53 recipient showed that most of the plasmids in IMP-6 producers were transferable, whereas only one-half of the plasmids in IMP-1 producers were transferable. PCR-based replicon typing and multiplex PCR identified five isolates belonging to the CG258 non-tonB79 cluster and no isolate belonging to the CG258-tonB79 cluster or sequence type 307 (ST307). Four K1-ST23 isolates, 10 K2-ST65 isolates, and 7 K2-ST86 isolates were detected that harbored virulence genes. The resistance genes in 85 isolates were transferable, but the virulence genes were not transferred. These results demonstrate the acquisition of IMP-type carbapenemase genes and CTX-M-type genes among hypervirulence isolates in Japan, warranting further attention and countermeasures. In this study, we have determined the molecular characteristics and epidemiology of IMP-6 producers that coharbored various CTX-M genes in Japan.IMPORTANCE Carbapenems serve as a last resort for the clinical treatment of multidrug-resistant infections. Therefore, the rapid spread of carbapenemase-producing strains represents a serious public health threat, further limiting antibiotic choices. The current findings of hypervirulent carbapenemase-producing Klebsiella pneumoniae clinical isolates in Japan demonstrate the potential broad spread and transfer of these genes, necessitating close surveillance.博士(医学)・乙第1509号・令和3年3月15日Copyright © 2020 Yonekawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license(https://creativecommons.org/licenses/by/4.0/)

    Independent Control by Each Female Gamete Prevents the Attraction of Multiple Pollen Tubes

    Get PDF
    SummaryIn flowering plants, double fertilization is normally accomplished by the first pollen tube, with the fertilized ovule subsequently inhibiting the attraction of a second pollen tube. However, the mechanism of second-pollen-tube avoidance remains unknown. We discovered that failure to fertilize either the egg cell or the central cell compromised second-pollen-tube avoidance in Arabidopsis thaliana. A similar disturbance was caused by disrupting the fertilization-independent seed (FIS) class polycomb-repressive complex 2 (FIS-PRC2), a central cell- and endosperm-specific chromatin-modifying complex for gene silencing. Therefore, the two female gametes have evolved their own signaling pathways. Intriguingly, second-pollen-tube attraction induced by half-successful fertilization allowed the ovules to complete double fertilization, producing a genetically distinct embryo and endosperm. We thus propose that each female gamete independently determines second-pollen-tube avoidance to maximize reproductive fitness in flowering plants
    corecore