54 research outputs found

    Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

    Get PDF
    Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Minimum conditions for the induction of cortical spreading depression in brain slices.

    No full text
    Cortical spreading depression (CSD) occurs during various forms of brain injury such as stroke, subarachnoid hemorrhage, and brain trauma, but it is also thought to be the mechanism of the migraine aura. It is therefore expected to occur over a range of conditions including the awake behaving state. Yet it is unclear how such a massive depolarization could occur under relatively benign conditions. Using a microfluidic device with focal stimulation capability in a mouse brain slice model, we varied extracellular potassium concentration as well as the area exposed to increased extracellular potassium to determine the minimum conditions necessary to elicit CSD. Importantly, we focused on potassium levels that are physiologically plausible (≤145 mM; the intracellular potassium concentration). We found a strong correlation between the threshold concentration and the slice area exposed to increased extracellular potassium: minimum area of exposure was needed with the highest potassium concentration, while larger areas were needed at lower concentrations. We also found that moderate elevations of extracellular potassium were able to elicit CSD in relatively small estimated tissue volumes that might be activated under noninjury conditions. Our results thus show that CSD may be inducible under the conditions that expected in migraine aura as well as those related to brain trauma

    Minimum conditions for the induction of cortical spreading depression in brain slices

    No full text
    Cortical spreading depression (CSD) occurs during various forms of brain injury such as stroke, subarachnoid hemorrhage, and brain trauma, but it is also thought to be the mechanism of the migraine aura. It is therefore expected to occur over a range of conditions including the awake behaving state. Yet it is unclear how such a massive depolarization could occur under relatively benign conditions. Using a microfluidic device with focal stimulation capability in a mouse brain slice model, we varied extracellular potassium concentration as well as the area exposed to increased extracellular potassium to determine the minimum conditions necessary to elicit CSD. Importantly, we focused on potassium levels that are physiologically plausible (≤145 mM; the intracellular potassium concentration). We found a strong correlation between the threshold concentration and the slice area exposed to increased extracellular potassium: minimum area of exposure was needed with the highest potassium concentration, while larger areas were needed at lower concentrations. We also found that moderate elevations of extracellular potassium were able to elicit CSD in relatively small estimated tissue volumes that might be activated under noninjury conditions. Our results thus show that CSD may be inducible under the conditions that expected in migraine aura as well as those related to brain trauma

    Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling

    No full text
    MoS2 exhibits multiple electronic properties associated with different crystal structures. Here, the authors observe inverted and fundamental gaps through a designed annealing-based strategy, to induce a semiconductor-to-metal phase transition in monolayer-MoS2 on Au, facilitated by interfacial strain and electron transfer from Au to MoS2
    corecore