55 research outputs found

    Membrane and Performance Study in Polymer Electrolyte Membrane Fuel Cells and Hydrogen Bromine Redox Flow Batteries

    Get PDF
    This dissertation represents the consideration of the problems of polymer electrolyte membrane fuel cells (PEMFC) and hydrogen-bromine redox flow batteries (RFB). Due to the importance of water management in PEMFCs, all the experiments were strictly controlled at different water hydration conditions. Water uptake and densities were measured for Nafion® and a series of 3M ionomer membranes. The thermodynamics of water and polymer was analyzed based on water uptake experiment and calorimetry. Furthermore, partial molar volumes (PMV) of water/membrane system was defined for the first time and used to analyze the interaction between water and polymers. Three states of water were identified. The performance of hydrogen bromine redox flow batteries was investigated. The experimental conditions were varied and optimized with respects of cell temperature, electrolyte concentration, membrane types and electrode layers. In addition, more detailed study of battery kinetics and transport limit issues was implemented by inserting a dynamic hydrogen reference electrode (DHE). Electrochemical Impedance Spectroscopy (EIS) method was utilized to further separate the losses occurred during battery charging and discharging process. It is believed that the bromine/bromide existence in the membrane, carbon paper electrode and Pt catalyst could harm the cell performance. The effective control of bromine and bromide ions is the key to improve the cell performance

    Quantitative analysis of endobronchial elastography combined with serum tumour markers of lung cancer in the diagnosis of benign and malignant mediastinal and hilar lymph nodes

    Get PDF
    Purpose: In malignant tumours, elastography and serum tumour markers have shown high diagnostic efficacy. Therefore, we aimed to quantitatively analyse the results of endobronchial elastography combined with serum tumour markers of lung cancer to accurately distinguish benign and malignant mediastinal and hilar lymph nodes.Methods: Data of patients who underwent endobronchial ultrasound-guided transbronchial needle aspiration for mediastinal lymph node enlargement in our hospital between January 2018 and August 2022 were retrospectively collected. The characteristics of quantitative elastography and serum tumour markers were evaluated.Results: We enrolled 197 patients (273 lymph nodes). In the differential diagnosis of benign and malignant mediastinal and hilar lymph nodes, the stiffness area ratio (SAR), strain ratio (SR), and strain rate in lymph nodes were significant, among which SAR had the highest diagnostic value (cut-off value, 0.409). The combination of the four tumour markers had a high diagnostic value (AUC, 0.886). Three types of quantitative elastography indices combined with serum tumour markers for lung cancer showed a higher diagnostic value (AUC, 0.930; sensitivity, 83.5%; specificity, 89.3%; positive predictive value, 88.1%; negative predictive value, 85%) (p < 0.05). In the differential diagnosis of pathological types of lung cancer, different quantitative elastography indicators and serum tumour markers for lung cancer have different diagnostic significance for the differential diagnosis of lung cancer pathological types.Conclusion: The quantitative analysis of endobronchial ultrasound elastography combined with tumour markers can improve the diagnosis rate of benign and malignant mediastinal and hilar lymph nodes, help guide the puncture of false negative lymph nodes, and reduce the misdiagnosis rate

    Effect of Asafoetida Extract on Growth and Quality of Pleurotus ferulic

    Get PDF
    Different concentrations of asafoetida extract were added to the medium of Pleurotus ferulic and the effects of the extract on growth of P. ferulic mycelium and fruiting bodies was observed. As the amount of asafoetida extract additive was increased, the growth of Pleurotus mycelium was faster, the time formation of buds was shorter and that yield of fruiting bodies was stimulated. However, overdosing of asafoetida extract hampered the growth of Pleurotus ferulic. The amino acid composition and volatile components in three kinds of pleurotus’ were contrasted, including wild pleurotus (WP), cultivated pleurotus with asafoetida extract (CPAE) and cultivated pleurotus without asafoetida extract (CP). CPAE with 2.3 g/100 g asafoetida extract addition had the highest content of total amino acids, as well as essential amino acids. WP had a higher content of total amino acids and essential amino acids than CP. In addition, CPAE with 2.3 g/100 g had the highest score of protein content of pleurotus fruiting bodies, while WP had a higher score than CP. In the score of essential amino acid components of pleurotus fruiting bodies, CP had the highest score, while CPAE was higher than WP. Asafoetida extract influenced the volatile components of Pleurotus ferulic greatly, making the volatile components of cultivated pleurotus more similar to those of wild pleurotus (WP)

    A CRM1 Inhibitor Alleviates Cardiac Hypertrophy and Increases the Nuclear Distribution of NT-PGC-1α in NRVMs

    Get PDF
    Chromosomal maintenance 1 (CRM1) inhibitors display antihypertrophic effects and control protein trafficking between the nucleus and the cytoplasm. PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1alpha) is a type of transcriptional coactivator that predominantly resides in the nucleus and is downregulated during heart failure. NT-PGC-1α is an alternative splicing variant of PGC-1α that is primarily distributed in the cytoplasm. We hypothesized that the use of a CRM1 inhibitor could shuttle NT-PGC-1α into the nucleus and activate PGC-1α target genes to potentially improve cardiac function in a mouse model of myocardial infarction (MI). We showed that PGC-1α and NT-PGC-1α were decreased in MI-induced heart failure mice. Phenylephrine and angiotensin II were applied to induce hypertrophy in neonatal rat ventricular myocytes (NRVMs). The antihypertrophic effects of the CRM1-inhibitor Selinexor was verified through profiling the expression of β-MHC and through visualizing the cell cross-sectional area. NRVMs were transfected with adenovirus-NT-PGC-1α or adenovirus-NLS (nucleus localization sequence)-NT-PGC-1α and then exposed to Selinexor. Confocal microscopy was then used to observe the shuttling of NT-PGC-1α. After NT-PGC-1α was shuttled into the nucleus, there was increased expression of its related genes, including PPAR-α, Tfam, ERR-γ, CPT1b, PDK4, and Nrf2. The effects of Selinexor on post-MI C57BL/6j mice were determined by echocardiography and qPCR. We found that Selinexor showed antihypertrophic effects but did not influence the ejection fraction of MI-mice. Interestingly, the antihypertrophic effects of Selinexor might be independent of NT-PGC-1α transportation

    Mitofusin 2 Participates in Mitophagy and Mitochondrial Fusion Against Angiotensin II-Induced Cardiomyocyte Injury

    Get PDF
    BackgroundMitochondrial dynamics play a critical role in mitochondrial function. The mitofusin 2 (MFN2) gene encodes a mitochondrial membrane protein that participates in mitochondrial fusion to maintain and operate the mitochondrial network. Moreover, MFN2 is essential for mitophagy. In Ang II-induced cardiac remodeling, the combined effects of MFN2-mediated mitochondrial fusion and mitophagy are unclear. This study was designed to explore a novel strategy for preventing cardiomyocyte injury via modulation of mitochondrial dynamics.MethodsWe studied the function of MFN2 in mitochondrial fusion and mitophagy in Ang II-stimulated cardiomyocyte injury. Cardiomyocyte injury experiments, including reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and apoptosis rate of cardiomyocytes were performed. The mitochondrial morphology in cardiomyocytes was examined via transmission electron microscopy (TEM) and confocal microscopy. Autophagic levels in response to Ang II were examined by immunoblotting of autophagy-related proteins. Moreover, PINK1/MFN2/Parkin pathway-related proteins were examined.ResultsWith stimulation by Ang II, MFN2 expression was progressively reduced. MFN2 deficiency impaired mitochondrial quality, resulting in exacerbated mitochondrial damage induced by Ang II. The Ang II-induced increases in ROS production and apoptosis rate were alleviated by MFN2 overexpression. Moreover, MFN2 alleviated the Ang II-induced reduction in MMP. MFN2 promoted mitochondrial fusion, and MFN2 promoted Parkin translocation and phosphorylation, leading to mitochondrial autophagy. The effects of MFN2 overexpression were reversed by autophagy inhibitors.ConclusionMitofusin 2 promotes Parkin translocation and phosphorylation, leading to mitophagy to clear damaged mitochondria. However, the beneficial effects of MFN2 were reversed by autophagy inhibitors. Additionally, MFN2 participates in mitochondrial fusion to maintain mitochondrial quality. Thus, MFN2 participated in mitophagy and mitochondrial fusion against Ang II-induced cardiomyocyte injury

    A Hybrid Prediction Model for Solar Radiation Based on Long Short-Term Memory, Empirical Mode Decomposition, and Solar Profiles for Energy Harvesting Wireless Sensor Networks

    No full text
    For power management in the energy harvesting wireless sensor networks (EH-WSNs), it is necessary to know in advance the collectable solar energy data of each node in the network. Our work aims to improve the accuracy of solar energy predictions. Therefore, several existing prediction algorithms in the literature are surveyed, and then this paper proposes a solar radiance prediction model based on a long short-term memory (LSTM) neural network in combination with the signal processing algorithm empirical mode decomposition (EMD). The EMD method is used to decompose the time sequence data into a series of relatively stable component sequences. For improving the prediction accuracy further by utilizing the current day solar radiation profile in one-hour-ahead predictions, similar solar radiation profile data were selected for training LSTM neural networks. Simulation results show that the hybrid model achieves better prediction performance than traditional prediction methods, such as the exponentially-weighted moving average (EWMA), weather conditioned moving average (WCMA), and only LSTM models
    • …
    corecore