70 research outputs found

    Treatment outcome of elderly patients with aggressive adult T cell leukemia-lymphoma: Nagasaki University Hospital experience

    Get PDF
    VCAP (vincristine, cyclophosphamide, doxorubicin, and prednisone)-AMP (doxorubicin, ranimustine, and prednisone)-VECP (vindesine, etoposide, carboplatin, and prednisone) is a standard regimen for aggressive adult T cell leukemia-lymphoma (ATL). However, the efficacy of this regimen has not been fully elucidated for patients aged 70 years or older. Here, we retrospectively analyzed elderly patients with aggressive ATL at Nagasaki University Hospital between 1994 and 2010 to assess treatment outcomes. Of 148 evaluable patients, 54 were aged 70 years or older at diagnosis. The median survival time (MST) and overall survival (OS) at 2 years in elderly patients were 10.6 months and 22.1 %, respectively. Thirty-four patients received VCAP-AMP-VECP as the initial treatment, although the doses were reduced for most patients. In these patients, MST and OS at 2 years were 13.4 months and 26.6 %, respectively. Eleven of 34 patients (32 %) received maintenance oral chemotherapy after two or three cycles of VCAP-AMP-VECP, and MST and OS at 2 years were 16.7 months and 32.7 %, respectively. Our results suggest that the VCAP-AMP-VECP regimen may be effective and that maintenance oral chemotherapy may be considered as a therapeutic option for elderly patients with aggressive ATL

    Molecular analysis of the BCR-ABL1 kinase domain in chronic-phase chronic myelogenous leukemia treated with tyrosine kinase inhibitors in practice: Study by the Nagasaki CML Study Group

    Get PDF
    An appropriate trigger for BCR-ABL1 mutation analysis has not yet been established in unselected cohorts of chronic-phase chronic myelogenous leukemia patients. We examined 92 patients after 12 months of tyrosine kinase inhibitor (TKI) treatment in Nagasaki Prefecture, Japan. Univariate analysis revealed that significant factors associated with not attaining a major molecular response (MMR) were the presence of the minor BCR-ABL1 fusion gene, a low daily dose of TKI, and the emergence of BCR-ABL1 kinase domain mutations conferring resistance to imatinib. Factors associated with the loss of sustained MMR were a low daily dose of TKI and the emergence of alternatively spliced BCR-ABL1 mRNA with a 35-nucleotide insertion. Taken together, our results suggest that the search for BCR-ABL1 mutations should be initiated if patients have not achieved MMR following 12 months of TKI treatment

    Enzymes involved in purine metabolism - A review of histochemical localization and functional implications

    Get PDF
    Many enzymes are involved in the biosynthesis, interconversion, and degradation of purine compounds. The exact function of these enzymes is still unknown, but they seem to play important roles other than in purine metabolism. To elucidate their functional roles, it is imperative to clarify their tissue distribution at the cellular or subcellular level. The present review summarizes the currently available information about their histochemical localization and proposed functions.In general, 5'-nucleotidase has been considered as a marker enzyme for the plasma membrane, and is considered to be a key enzyme in the generation of adenosine, a potential vasodilator. However, from its wide range of localization in tissues it is also considered to be related to the membrane movement of cells in the transitional epithelium, cellular motile response, transport process, cellular growth, synthesis of fibrous protein and calcification, lymphocyte activation, neurotransmission, and oxygen sensing mechanism. Adenosine deaminase (ADA) is present in all tissues in mammals. Although the main function of ADA is the development of the immune system in humans, it seems to be associated with the differentiation of epithelia1 cells and monocytes, neurotransmission, and maintenance of gestation. Purine nucleoside phosphorylase (PNP) is generally considered as a cytosolic enzyme, but recently, mitochondrial PNP, a different protein from cytosolic PNP, was reported. PNP is also widely expressed in human tissues. It is found in most tissues of the body, but the highest activity is in peripheral blood granulocyte and lymphoid tissues. It is also related to the development of T-cell immunity in humans as is ADA. Moreover, its contribution to centriole replication andlor regulation of microtubule assembly has been suggested. Immunohistochemical localization of xanthine oxidase has been reported in various tissues from various animal species. Xanthine oxidase has been suggested to be involved in the pathogenesis of post-ischemic reperfusion tissue injury through the generation of reactive oxygen species, while the extensive tissue localization of xanthine dehydrogenase/oxidase suggests several other roles for this enzyme, including a protective barrier against bacterial infection by producing either superoxide radicals or uric acid. Furthermore, an involvement in cellular proliferation and differentiation has been suggested. Urate oxidase is generally considered a liver-specific enzyme, except for bovines which possess this enzyme in the kidney. Urate oxidase is exclusively located in the peroxisomes of fish, frogs, and rats, but was lost in birds, some reptiles, and primates during evolution. A histochemical demonstration of allantoin-degrading enzymes has not been performed, but these enzymes have been located in peroxisomes by sucrose density gradient centrifugation. AMP deaminase activity is higher in skeletal muscle than in any other tissues. AMP deaminase may be involved in a number of physiological processes, such as the conversion of adenine nucleotide to inosine or guanine nucleotide, stabilizing the adenylate energy charge, and the reaction of the purine nucleotide cycle. There are three distinct isozymes (A, B, C) with different kinetic, physical, and immunological properties. Isozymes A, B, C have been isolated from muscle, liver (kidney), and heart tissue, respectively. In the muscle, AMP deaminase isozymes exist in a different part, suggesting a multiple functional role of this enzyme. High hypoxanthine-guanine phosphoribosyltransferase (HGPRT) activity is found in some regions of a normal adult human brain. However, very little is known regarding the histochemical tissue localization of HGPRT. Immunohistochemical localization of its developmental expression suggests that HGPRT may not be essential for purine nucleotide supplement in the segmentation of brain cells, but may play a significant role in the developing hippocampus

    Widespread cellular distribution of aldehyde oxidase in human tissues found by immunohistochemistry staining

    Get PDF
    Aldehyde oxidase (EC 1.2.3.1) is a xenobiotic metabolizing enzyme that catalyzes a variety of organic aldehydes and N-heterocyclic compounds. However, its precise pathophysiological function in humans, other than its xenobiotic metabolism, remains unknown. In order to gain a better understanding of the role of this enzyme, it is important to know its exact localization in human tissues. In this study, we investigated the distribution of aldehyde oxidase at the cellular leve1 in a variety of human tissues by immunohistochemistry. The enzyme was found to be widespread in respiratory, digestive, urogenital, and endocrine tissues, though we also observed a cellspecific localization in the various tissues studied. In the respiratory system, it was particularly abundant in epithelial cells from the trachea and bronchium, as well as alveolar cells. In the digestive system, aldehyde oxidase was observed in surface epithelia of the small and large intestines, in addition to hepatic cells. Furthermore, the proximal, distal, and collecting tubules of the kidney were immunostained with various intensities, while glomerulus tissues were not. In epididymus and prostate tissues, staining was observed in the ductuli epididymidis and glandular epithelia. Moreover, the adrenal gland, cortex, and notably the zona reticularis, showed strong immunostaining. This prevalent tissue distribution of aldehyde oxidase in humans suggests some additional pathophysiological functions besides xenobiotic metabolism. Accordingly, some possible roles are discussed

    On Modeling U.S. Product Liability Risk : An Empirical Analysis

    No full text

    Precision grinding of microarray lens molding die with 4-axes controlled microwheel

    No full text
    This paper deals with precision grinding of microarray lens (fly eye) molding die by using a resinoid bonded diamond wheel. An ultra-precision grinding system of microarray lens molding die and new truing method of resinoid bonded diamond wheel were developed. In this system, a grinding wheel was four-dimensionally controlled with 1 nm resolution by linear scale feedback system and scanned on the workpiece surface. New truing method by using a vanadium alloy tool was developed and its performance was obtained with high preciseness and low wheel wear. Finally, the microarray lens molding dies of fine grain tungsten carbide (WC) was tested with the resinoid bonded diamond wheel to evaluate grinding performance
    • …
    corecore