31 research outputs found

    Synthetic Study towards Construction of Potential Scaffold of Antitumor Agents Andrastins

    Get PDF
    For a construction of potential scaffold of antitumor agents andrastins, intramolecular Diels-Alder reaction of the triene composed of trans-fused AB ring with tethered D ring was examined. The reaction in refluxing toluene afforded a desired cis-fused hydrindane skeleton, the relative stereochemistries of which were unambiguously determined by X-ray crystallographic analysis

    Construction of cis-Fused Hydrindane Skeleton with a Lactone Tether Utilizing Intramolecular Diels-Alder Reaction

    Get PDF
    Synthetically important, cis-fused hydrindane skeleton having quaternary angular stereogenic centers was selectively furnished by intramolecular Diels-Alder reaction of ester-tethered precursor via endo transition state. The reaction was applicable for a construction of the steroidal BCD ring system with cis-hydrindane framework

    Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Get PDF
    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene

    Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus

    Get PDF
    DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of gamma-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure

    Integrated Modelling of Cell Responses after Irradiation for DNA-Targeted Effects and Non-Targeted Effects

    Get PDF
    Intercellular communication after ionizing radiation exposure, so-called non-targeted effects (NTEs), reduces cell survival. Here we describe an integrated cell-killing model considering NTEs and DNA damage along radiation particle tracks, known as DNA-targeted effects (TEs) based on repair kinetics of DNA damage. The proposed model was applied to a series of experimental data, i.e., signal concentration, DNA damage kinetics, cell survival curve and medium transfer bystander effects (MTBEs). To reproduce the experimental data, the model considers the following assumptions: (i) the linear-quadratic (LQ) function as absorbed dose to express the hit probability to emit cell-killing signals, (ii) the potentially repair of DNA lesions induced by NTEs, and (iii) lower efficiency of repair for the damage in NTEs than that in TEs. By comparing the model results with experimental data, we found that signal-induced DNA damage and lower repair efficiency in non-hit cells are responsible for NTE-related repair kinetics of DNA damage, cell survival curve with low-dose hyper-radiosensitivity (HRS) and MTBEs. From the standpoint of modelling, the integrated cell-killing model with the LQ relation and a different repair function for NTEs provide a reasonable signal-emission probability and a new estimation of low-dose HRS linked to DNA repair efficiency

    Application of a simple DNA damage model developed for electrons to proton irradiation

    Get PDF
    Proton beam therapy allows irradiating tumor volumes with reduced side effects on normal tissues with respect to conventional x-ray radiotherapy. Biological effects such as cell killing after proton beam irradiations depend on the proton kinetic energy, which is intrinsically related to early DNA damage induction. As such, DNA damage estimation based on Monte Carlo simulations is a research topic of worldwide interest. Such simulation is a mean of investigating the mechanisms of DNA strand break formations. However, past modellings considering chemical processes and DNA structures require long calculation times. Particle and heavy ion transport system (PHITS) is one of the general-purpose Monte Carlo codes that can simulate track structure of protons, meanwhile cannot handle radical dynamics simulation in liquid water. It also includes a simple model enabling the efficient estimation of DNA damage yields only from the spatial distribution of ionizations and excitations without DNA geometry, which was originally developed for electron track-structure simulations. In this study, we investigated the potential application of the model to protons without any modification. The yields of single-strand breaks, double-strand breaks (DSBs) and the complex DSBs were assessed as functions of the proton kinetic energy. The PHITS-based estimation showed that the DSB yields increased as the linear energy transfer (LET) increased, and reproduced the experimental and simulated yields of various DNA damage types induced by protons with LET up to about 30 keV mu m(-1). These results suggest that the current DNA damage model implemented in PHITS is sufficient for estimating DNA lesion yields induced after protons irradiation except at very low energies (below 1 MeV). This model contributes to evaluating early biological impacts in radiation therapy

    Modeling of yield estimation for DNA strand breaks based on Monte Carlo simulations of electron track structure in liquid water

    Get PDF
    DNA strand breaks are induced in cells mainly composed of liquid water along ionizing radiation tracks. For estimating DNA strand break yields, track structures for electrons in liquid water in Monte Carlo simulations are of great importance; however, detailed simulations to obtain both energy deposition and free radical reaction to DNA are time-consuming processes. Here, we present a simple model for estimating yields of single- and double-strand breaks (SSB, DSB, and DSB/SSB ratio) based only on spatial patterns of inelastic interactions (i.e., ionization and electronic excitation) generated by electrons, which are evaluated by the track structure mode of Particle and Heavy Ion Transport code System without analyzing the production and diffusion of free radicals. In the present model, the number of events per track and that of a pair composed of two events within 3.4 nm (10 base pairs) were stochastically sampled for calculating SSB and DSB yields. The results calculated by this model agree well with other simulations and experimental data on the DSB yield and the DSB/SSB ratio for monoenergetic electron irradiation. This model also demonstrates the relative biological effectiveness at the DSB endpoint for various photon irradiations, indicating that the spatial pattern composed of ionization and electronic excitation without physicochemical and chemical stages is sufficient to obtain the impact of electrons on the initial DNA strand break induction
    corecore