65 research outputs found

    A Possible Anticancer Agent, Type III Interferon, Activates Cell Death Pathways and Produces Antitumor Effects

    Get PDF
    Recently identified interleukin-28 and -29 belong to a novel type III interferon (IFN) family, which could have distinct biological properties from type I and II IFNs. Type I IFNs, IFN-α/β, have been clinically applied for treating a certain kind of malignancies for over 30 years, but a wide range of the adverse effects hampered the further clinical applications. Type III IFNs, IFN-λs, have similar signaling pathways as IFN-α/β and inhibits proliferation of tumor cells through cell cycle arrest or apoptosis. Restricted patterns of type III IFN receptor expression in contrast to ubiquitously expressed IFN-α/β receptors suggest that type III IFNs have limited cytotoxicity to normal cells and can be a possible anticancer agent. In this paper, we summarize the current knowledge on the IFN-λs-mediated tumor cell death and discuss the functional difference between type I and III IFNs

    S100A9は、骨細胞様細胞においてMAPKsおよびSTAT3シグナル伝達経路を介してIL-6およびRANKLの発現を増加させる

    Get PDF
    Objective: Calprotectin is hetero-complex of S100A8 and S100A9 and mainly secreted from neutrophils, monocytes and chondrocytes in inflammatory condition. Calprotectin binds to RAGE and TLR4, and induces the expression of pro-inflammatory chemokines and cytokines in various cells. Periodontitis is chronic inflammatory disease to lead gingival inflammation and alveolar bone resorption. Calprotectin levels in gingival crevicular fluid of periodontitis patients are higher than healthy patients. In the present study, the effects of S100A8 and S100A9 on the expressions of pro-inflammatory cytokines and bone metabolism related factor in mouse osteocyte like cells (MLO-Y4-A2) were investigated. Design: MLO-Y4-A2 cells were treated with S100A8 and S100A9, and the expressions of RAGE, TLR4, RANKL and several inflammatory cytokines were analyzed by PCR and Western blotting or ELISA methods. To investigate the intracellular signaling pathways, phosphorylation of MAPK and STAT3 was determined by Western blotting, and chemical specific inhibitors and siRNAs were used. Results: Expressions of IL-6 and RANKL were increased by treatment with S100A9 but not S100A8. However, both S100A8 and S100A9 did not changed expression of IL-1β, IL-8 and TNF-α. Although RAGE and TLR4 expressions were not up-regulated by S100A9 treatment, transfection of siRNA for RAGE and TLR4 significantly decreased IL-6 and RANKL expressions. In addition, S100A9 activated p38, ERK and STAT3 signaling pathways, and inhibitors for these factors significantly decreased S100A9 induced IL-6 and RANKL expressions. Conclusions: These results indicated that S100A9 induces IL-6 and RANKL production via engagement with RAGE and TLR4 signalings in osteocytes and suggested that S100A9 may play important roles in the periodontal alveolar bone destruction

    AGEs increase lipocalin 2 expression

    Get PDF
    Background and Objectives: Diabetes mellitus (DM), a risk factor of periodontal diseases, exacerbates the pathological condition of periodontitis. A major factor for DM complications is advanced glycation end-products (AGEs) that accumulate in periodontal tissues and cause inflammatory events. Lipocalin 2 (LCN2) is an antimicrobial peptide and inflammation-related factor, and LCN2 levels increase in DM. In the present study, the effects of AGEs and lipopolysaccharide of Porphyromonas gingivalis (P.g-LPS) on LCN2 expression in human oral epithelial cells (TR146 cells) and the role of secreted LCN2 in periodontitis with DM were investigated. Material and Methods: TR146 cells were cultured with AGEs (AGE2) and control BSA and cell viability was estimated, or with P.g-LPS. Conditioned medium and cell lysates were prepared from cultures of epithelial cells and used for western blotting and ELISA to analyze LCN2, RAGE, IL-6, MAPK and NF-κB. RNA was isolated from AGE-treated TR146 cells and differentiated HL-60 (D-HL-60) cells and used for quantitative real-time PCR to examine the expression of LCN2 and interleukin-6 (IL-6) mRNAs. RAGE- and LCN2-siRNAs (siRAGE, siLCN2) were transfected into epithelial cells, and AGE-induced LCN2 expression was investigated. D-HL-60 cells were co-cultured with TR146 cells that were transfected with siLCN2 and treated with AGEs, IL-6 mRNA expression in D-HL-60 cells and cell migration were investigated. Results: AGEs increased the expression levels of LCN2 and IL-6 in oral epithelial cells. siRAGE and a neutralizing antibody for RAGE inhibited AGE-induced LCN2 expression. AGEs stimulated the phosphorylation of ERK, p38 and NF-kB in epithelial cells, and their inhibitors suppressed AGE-induced LCN2 expression. In contrast, P.g-LPS did not show a significant increase on LCN2 level in TR146 cells that expressed toll-like receptor 2. In co-culture experiments, AGE-induced LCN2 inhibited IL-6 mRNA expression in D-HL-60 cells, and LCN2 knockdown in epithelial cells suppressed HL-60 cell migration. Conclusion: These results suggested that AGEs increase LCN2 expression via RAGE, MAPK, and NF-κB signaling pathways in oral epithelial cells, and secreted LCN2 may influence the pathological condition of periodontitis with DM

    Porphyromonas gingivalis Outer Membrane Vesicles Stimulate Gingival Epithelial Cells to Induce Pro-Inflammatory Cytokines via the MAPK and STING Pathways

    Get PDF
    Porphyromonas gingivalis (Pg) is a keystone pathogen associated with chronic periodontitis and produces outer membrane vesicles (OMVs) that contain lipopolysaccharide (LPS), gingipains, and pathogen-derived DNA and RNA. Pg-OMVs are involved in the pathogenesis of periodontitis. Pg-OMV-activated pathways that induce the production of the pro-inflammatory cytokines, interleukin (IL)-6, and IL-8 in the human gingival epithelial cell line, OBA-9, were investigated. The role of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB in levels of Pg-OMV-induced pro-inflammatory cytokines was investigated using Western blot analysis and specific pathway inhibitors. Pg-OMVs induced IL-6 and IL-8 production via the extracellular signal-regulated kinase (Erk) 1/2, c-Jun N-terminal kinase (JNK), p38 MAPK, and NF-κB signaling pathways in OBA-9 cells. In addition, the stimulator of interferon genes (STING), an essential innate immune signaling molecule, was triggered by a cytosolic pathogen DNA. Pg-OMV-induced IL-6 and IL-8 mRNA expression and production were significantly suppressed by STING-specific small interfering RNA. Taken together, these results demonstrated that Pg-OMV-activated Erk1/2, JNK, p38 MAPK, STING, and NF-κB signaling pathways resulting in increased IL-6 and IL-8 expression in human gingival epithelial cells. These results suggest that Pg-OMVs may play important roles in periodontitis exacerbation by stimulating various pathways

    An image cytometric technique is a concise method to detect adenoviruses and host cell proteins and to monitor the infection and cellular responses induced

    Get PDF
    BackgroundGenetically modified adenoviruses (Ad) with preferential replications in tumor cells have been examined for a possible clinical applicability as an anti-cancer agent. A simple method to detect viral and cellular proteins is valuable to monitor the viral infections and to predict the Ad-mediated cytotoxicity.MethodsWe used type 5 Ad in which the expression of E1A gene was activated by 5′-regulatory sequences of genes that were augmented in the expression in human tumors. The Ad were further modified to have the fiber-knob region replaced with that derived from type 35 Ad. We infected human mesothelioma cells with the fiber-replaced Ad, and sequentially examined cytotoxic processes together with an expression level of the viral E1A, hexon, and cellular cleaved caspase-3 with image cytometric and Western blot analyses.ResultsThe replication-competent Ad produced cytotoxicity on mesothelioma cells. The infected cells expressed E1A and hexon 24 h after the infection and then showed cleavage of caspase-3, all of which were detected with image cytometry and Western blot analysis. Image cytometry furthermore demonstrated that increased Ad doses did not enhance an expression level of E1A and hexon in an individual cell and that caspase-3-cleaved cells were found more frequently in hexon-positive cells than in E1A-positive cells. Image cytometry thus detected these molecular changes in a sensitive manner and at a single cell level. We also showed that an image cytometric technique detected expression changes of other host cell proteins, cyclin-E and phosphorylated histone H3 at a single cell level.ConclusionsImage cytometry is a concise procedure to detect expression changes of Ad and host cell proteins at a single cell level, and is useful to analyze molecular events after the infection

    CA-ARBAC: privacy preserving using context-aware role-based access control on Android permission system

    Get PDF
    Existing mobile platforms are based on manual way of granting and revoking permissions to applications. Once the user grants a given permission to an application, the application can use it without limit, unless the user manually revokes the permission. This has become the reason for many privacy problems because of the fact that a permission that is harmless at some occasion may be very dangerous at another condition. One of the promising solutions for this problem is context-aware access control at permission level that allows dynamic granting and denying of permissions based on some predefined context. However, dealing with policy configuration at permission level becomes very complex for the user as the number of policies to configure will become very large. For instance, if there are A applications, P permissions, and C contexts, the user may have to deal with A × P × C number of policy configurations. Therefore, we propose a context-aware role-based access control model that can provide dynamic permission granting and revoking while keeping the number of policies as small as possible. Although our model can be used for all mobile platforms, we use Android platform to demonstrate our system. In our model, Android applications are assigned roles where roles contain a set of permissions and contexts are associated with permissions. Permissions are activated and deactivated for the containing role based on the associated contexts. Our approach is unique in that our system associates contexts with permissions as opposed to existing similar works that associate contexts with roles. As a proof of concept, we have developed a prototype application called context-aware Android role-based access control. We have also performed various tests using our application, and the result shows that our model is working as desired

    Metformin produces growth inhibitory effects in combination with nutlin-3a on malignant mesothelioma through a cross-talk between mTOR and p53 pathways

    Get PDF
    BackgroundMesothelioma is resistant to conventional treatments and is often defective in p53 pathways. We then examined anti-tumor effects of metformin, an agent for type 2 diabetes, and combinatory effects of metformin and nutlin-3a, an inhibitor for ubiquitin-mediated p53 degradation, on human mesothelioma.MethodsWe examined the effects with a colorimetric assay and cell cycle analyses, and investigated molecular events in cells treated with metformin and/or nutlin-3a with Western blot analyses. An involvement of p53 was tested with siRNA for p53.ResultsMetformin suppressed cell growth of 9 kinds of mesothelioma including immortalized cells of mesothelium origin irrespective of the p53 functional status, whereas susceptibility to nutlin-3a was partly dependent on the p53 genotype. We investigated combinatory effects of metformin and nutlin-3a on, nutlin-3a sensitive MSTO-211H and NCI-H28 cells and insensitive EHMES-10 cells, all of which had the wild-type p53 gene. Knockdown of p53 expression with the siRNA demonstrated that susceptibility of MSTO-211H and NCI-H28 cells to nutlin-3a was p53-dependent, whereas that of EHMES-10 cells was not. Nevertheless, all the cells treated with both agents produced additive or synergistic growth inhibitory effects. Cell cycle analyses also showed that the combination increased sub-G1 fractions greater than metformin or nutlin-3a alone in MSTO-211H and EHMES-10 cells. Western blot analyses showed that metformin inhibited downstream pathways of the mammalian target of rapamycin (mTOR) but did not activate the p53 pathways, whereas nutlin-3a phosphorylated p53 and suppressed mTOR pathways. Cleaved caspase-3 and conversion of LC3A/B were also detected but it was dependent on cells and treatments. The combination of both agents in MSTO-211H cells rather suppressed the p53 pathways that were activated by nutrin-3a treatments, whereas the combination rather augmented the p53 actions in NCI-H28 and EHMES-10 cells.ConclusionThese data collectively indicated a possible interactions between mTOR and p53 pathways, and the combinatory effects were attributable to differential mechanisms induced by a cross-talk between the pathways

    Cytotoxicity of replication-competent adenoviruses powered by an exogenous regulatory region is not linearly correlated with the viral infectivity/gene expression or with the E1A-activating ability but is associated with the p53 genotypes

    Get PDF
    BackgroundReplication-competent adenoviruses (Ad) produced cytotoxic effects on infected tumors and have been examined for the clinical applicability. A biomarkers to predict the cytotoxicity is valuable in a clinical setting.MethodsWe constructed type 5 Ad (Ad5) of which the expression of E1A gene was activated by a 5′ regulatory sequences of survivin, midkine or cyclooxygenase-2, which were highly expressed in human tumors. We also produced the same replication-competent Ad of which the fiber-knob region was replaced by that of Ad35 (AdF35). The cytotoxicity was examined by a colorimetric assay with human tumor cell lines, 4 kinds of pancreatic, 9 esophageal carcinoma and 5 mesothelioma. Ad infectivity and Ad-mediated gene expression were examined with replication-incompetent Ad5 and AdF35 which expressed the green fluorescence protein gene. Expression of cellular receptors for Ad5 and AdF35 was also examined with flow cytometry. A transcriptional activity of the regulatory sequences was investigated with a luciferase assay in the tumor cells. We then investigated a possible correlation between Ad-mediated cytotoxicity and the infectivity/gene expression, the transcriptional activity or the p53 genotype.ResultsWe found that the cytotoxicity was greater with AdF35 than with Ad5 vectors, but was not correlated with the Ad infectivity/gene expression irrespective of the fiber-knob region or the E1A-activating transcriptional activity. In contrast, replication-competent Ad produced greater cytotoxicity in p53 mutated than in wild-type esophageal carcinoma cells, suggesting a possible association between the cytotoxicity and the p53 genotype.ConclusionsSensitivity to Ad-mediated cytotoxic activity was linked with the p53 genotype but was not lineally correlated with the infectivity/gene expression or the E1A expression
    corecore