133 research outputs found

    Kcnab1 Is Expressed in Subplate Neurons With Unilateral Long-Range Inter-Areal Projections

    Get PDF
    Subplate (SP) neurons are among the earliest-born neurons in the cerebral cortex and heterogeneous in terms of gene expression. SP neurons consist mainly of projection neurons, which begin to extend their axons to specific target areas very early during development. However, the relationships between axon projection and gene expression patterns of the SP neurons, and their remnant layer 6b (L6b) neurons, are largely unknown. In this study, we analyzed the corticocortical projections of L6b/SP neurons in the mouse cortex and searched for a marker gene expressed in L6b/SP neurons that have ipsilateral inter-areal projections. Retrograde tracing experiments demonstrated that L6b/SP neurons in the primary somatosensory cortex (S1) projected to the primary motor cortex (M1) within the same cortical hemisphere at postnatal day (PD) 2 but did not show any callosal projection. This unilateral projection pattern persisted into adulthood. Our microarray analysis identified the gene encoding a β subunit of voltage-gated potassium channel (Kcnab1) as being expressed in L6b/SP. Double labeling with retrograde tracing and in situ hybridization demonstrated that Kcnab1 was expressed in the unilaterally-projecting neurons in L6b/SP. Embryonic expression was specifically detected in the SP as early as embryonic day (E) 14.5, shortly after the emergence of SP. Double immunostaining experiments revealed different degrees of co-expression of the protein product Kvβ1 with L6b/SP markers Ctgf (88%), Cplx3 (79%), and Nurr1 (58%), suggesting molecular subdivision of unilaterally-projecting L6b/SP neurons. In addition to expression in L6b/SP, scattered expression of Kcnab1 was observed during postnatal stages without layer specificity. Among splicing variants with three alternative first exons, the variant 1.1 explained all the cortical expression mentioned in this study. Together, our data suggest that L6b/SP neurons have corticocortical projections and Kcnab1 expression defines a subpopulation of L6b/SP neurons with a unilateral inter-areal projection

    Optimization temperature sensitivity using the optically detected magnetic resonance spectrum of a nitrogen-vacancy center ensemble

    Get PDF
    Temperature sensing with nitrogen vacancy (NV) centers using quantum techniques is very promising and further development is expected. Recently, the optically detected magnetic resonance (ODMR) spectrum of a high-density ensemble of the NV centers was reproduced with noise parameters [inhomogeneous magnetic field, inhomogeneous strain (electric field) distribution, and homogeneous broadening] of the NV center ensemble. In this study, we use ODMR to estimate the noise parameters of the NV centers in several diamonds. These parameters strongly depend on the spin concentration. This knowledge is then applied to theoretically predict the temperature sensitivity. Using the diffraction-limited volume of 0.1 micron^3, which is the typical limit in confocal microscopy, the optimal sensitivity is estimated to be around 0.76 mK/Hz^(1/2) with an NV center concentration of 5.0e10^17/cm^3. This sensitivity is much higher than previously reported sensitivities, demonstrating the excellent potential of temperature sensing with NV centers.Comment: 17 pages, 4 figures, 1 tabl

    Crypt neurons express a single V1R-related ora gene

    Get PDF
    Abstract Both ciliated and microvillous olfactory sensory neuron populations express large families of olfactory receptor genes. However, individual neurons generally express only a single receptor gene according to the ''one neuron-one receptor'' rule. We report here that crypt neurons, the third type of olfactory neurons in fish species, use an even more restricted mode of expression. We recently identified a novel olfactory receptor family of 6 highly conserved G protein-coupled receptors, the v1r-like ora genes. We show now that a single member of this family, ora4 is expressed in nearly all crypt neurons, whereas the other 5 ora genes are not found in this cell type. Consistent with these findings, ora4 is never coexpressed with any of the remaining 5 ora genes. Furthermore, several lines of evidence indicate the absence of any other olfactory receptor families in crypt neurons. These results suggest that the vast majority of the crypt neuron population may select one and the same olfactory receptor gene, a ''one cell type-one receptor'' mode of expression. Such an expression pattern is familiar in the visual system, with rhodopsin as the sole light receptor of rod photoreceptor cells, but unexpected in the sense of smell

    PIP3-Phldb2 is crucial for LTP regulating synaptic NMDA and AMPA receptor density and PSD95 turnover

    Get PDF
    The essential involvement of phosphoinositides in synaptic plasticity is well-established, but incomplete knowledge of the downstream molecular entities prevents us from understanding their signalling cascades completely. Here, we determined that Phldb2, of which pleckstrin-homology domain is highly sensitive to PIP3, functions as a phosphoinositide-signalling mediator for synaptic plasticity. BDNF application caused Phldb2 recruitment toward postsynaptic membrane in dendritic spines, whereas PI3K inhibition resulted in its reduced accumulation. Phldb2 bound to postsynaptic scaffolding molecule PSD-95 and was crucial for localization and turnover of PSD-95 in the spine. Phldb2 also bound to GluA1 and GluA2. Phldb2 was indispensable for the interaction between NMDA receptors and CaMKII, and the synaptic density of AMPA receptors. Therefore, PIP3-responsive Phldb2 is pivotal for induction and maintenance of LTP. Memory formation was impaired in our Phldb2−/− mice

    Zebrafish crypt neurons project to a single, identified mediodorsal glomerulus

    Get PDF
    Crypt neurons are a third type of olfactory receptor neurons with a highly unusual “one cell type - one receptor” mode of expression, the same receptor being expressed by the entire population of crypt neurons. Attempts to identify the target region(s) of crypt neurons have been inconclusive so far. We report that TrkA-like immunoreactivity specifically labeled somata, axons, and terminals of zebrafish crypt neurons and reveal a single glomerulus, mdg2 of the dorsomedial group, as target glomerulus of crypt neurons. Injection of a fluorescent tracing dye into the mdg2 glomerulus retrogradely labeled mostly crypt neurons, as assessed by quantitative morphometry, whereas no crypt neurons were found after injections in neighboring glomeruli. Our data provide strong evidence that crypt neurons converge onto a single glomerulus, and thus form a labeled line consisting of a single sensory cell type, a single olfactory receptor and a single target glomerulus
    corecore