27 research outputs found

    Effective treatment of U(1) gauge field and charged particles in axion inflation

    Full text link
    The axionic inflaton with the Chern-Simons coupling may generate U(1) gauge fields and charged particles simultaneously. In order to incorporate the backreaction from the charged particles on the gauge fields, we develop a procedure to obtain an equilibrium solution for the gauge fields by treating the induced current as effective electric and magnetic conductivities. Introducing mean field approximation, and numerically solving self-consistency equations, we find that the gauge field amplitudes are drastically suppressed. Interestingly, as the production becomes more efficient, the charged particles gain a larger part of the transferred energy from the inflaton and eventually dominate it. Our formalism offers a basis to connect this class of inflationary models to a rich phenomenology such as baryogenesis and magnetogenesis.Comment: 28 pages, 7 figure

    Albumin gene targeting in human embryonic stem cells and induced pluripotent stem cells with helper-dependent adenoviral vector to monitor hepatic differentiation

    Get PDF
    AbstractAlthough progresses in developing differentiation procedures have been achieved, it remains challenging to generate hES/iPS cell-derived mature hepatocytes. We performed knock-in of a monomeric Kusabira orange (mKO1) cassette in the albumin (ALB) gene, in human embryonic stem (hES) cells and induced pluripotent stem (hiPS) cells, with the use of the helper-dependent adenovirus vector (HDAdV). Upon induction into the hepatic lineages, these knock-in hES/iPS cells differentiated into cells that displayed several known hepatic functions. The mKO1 knock-in (ALB/mKo1) hES/hiPS cells were used to visualize hepatic differentiation in vitro. mKO1 reporter expression recapitulated endogenous ALB transcriptional activity. ALB/mKo1 [Hi] population isolated by flow cytometry was confirmed to be enriched with ALB mRNA. Expression profile analyses revealed that characteristic hepatocyte genes and genes related to drug metabolism and many aspects of liver function were highly enriched in the ALB/mKo1 [Hi] population. Our data demonstrate that ALB/mKo1 knock-in hES/iPS cells are valuable resources for monitoring in vitro hepatic differentiation, isolation and analyses of hES and hiPS cells-derived hepatic cells that actively transcribing ALB. These knock-in hES/iPS cell lines could provide further insights into the mechanism of hepatic differentiation and molecular signatures of the hepatic cells derived from hES/iPS cells

    Inclination Perception Affected by Velocity and Size of Visual Objects and Human Postures

    No full text

    Basic Design of Small-Sized Linear Electromagnetic Solenoid for Tactile Display

    No full text

    指先への振動刺激によって誘発される力覚様感覚の大きさ

    No full text

    Vibrotactile Apparent Movement by DC Motors and Voice-coil Tactors

    No full text
    Vibrotactile displays are expected to be effective tools for presenting personal information. We investigate the possibility of showing various kinds of information by making use of tactile apparent movement. As a first step, we observe the occurrence of apparent movement for various values of stimulus duration and stimulus onset asynchrony for two types of tactors: DC motor-based vibrating motors and voice-coil type tactors. The results show the effectiveness of using voice-coil type tactors for presenting information in a short time. Key words: Vibrotactile, apparent movement, vibrator 1

    Vibrotactile Letter Reading Using a Low-Resolution Tactor Array

    No full text
    Vibrotactile displays have been studied for several decades in the context of sensory substitution. Recently, a number of vibrotactile displays have been developed to extend sensory modalities in virtual reality. Some of these target the whole body as the stimulation region, but existing systems are only designed for discrete stimulation points at specific parts of the body. However, since human tactile sensation has more resolution, a higher density might be required in tactor alignment in order to realize general-purpose vibrotactile displays. One problem with this approach is that it might result in an impractically high number of required tactors. Our current focus is to explore ways of simplifying the system while maintaining an acceptable level of expressive ability. As a first step, we chose a well-studied task: tactile letter reading. We examined the possibility of distinguishing alphanumeric letters by using only a 3-by3 array of vibrating motors on the back of a chair. The tactors are driven sequentially in the same sequence as if someone were tracing the letter on the chair's back. The results showed 87% successful letter recognition in some cases, which was close to the results in previous research with much larger arrays
    corecore