23 research outputs found

    Evaluation of platelet reactivity using P2Y12 reaction units in acute coronary syndrome with essential thrombocythemia: A case report

    Get PDF
    AbstractEssential thrombocythemia (ET) has been reported to cause acute coronary disease. However, the efficacy of anti-platelet therapy for ET is unclear since there are individual differences in the platelet function of ET patients. Here we report a case of a 62-year-old man with ET who was admitted to our hospital because of acute coronary syndrome. He underwent coronary angioplasty. Dual anti-platelet therapy with aspirin (81mg/day) and clopidogrel (75mg/day) was subsequently initiated. We evaluated platelet reactivity in P2Y12 reaction units, and subsequently determined anti-platelet drugs and corresponding doses.<Learning objective: Essential thrombocythemia (ET) is a myeloproliferative disorder that causes acute coronary disease. As there are individual differences in the platelet function of patients with ET, the efficacy of anti-platelet therapy for these patients varies. Evaluation of platelet reactivity using P2Y12 reaction units is useful in determining appropriate anti-platelet drugs and corresponding doses.

    Understanding Novel Superconductors with Ab Initio Calculations

    Full text link
    This chapter gives an overview of the progress in the field of computational superconductivity. Following the MgB2 discovery (2001), there has been an impressive acceleration in the development of methods based on Density Functional Theory to compute the critical temperature and other physical properties of actual superconductors from first-principles. State-of-the-art ab-initio methods have reached predictive accuracy for conventional (phonon-mediated) superconductors, and substantial progress is being made also for unconventional superconductors. The aim of this chapter is to give an overview of the existing computational methods for superconductivity, and present selected examples of material discoveries that exemplify the main advancements.Comment: 38 pages, 10 figures, Contribution to Springer Handbook of Materials Modellin

    Impact of rapid identification of positive blood cultures using the Verigene system on antibiotic prescriptions: A prospective study of community-onset bacteremia in a tertiary hospital in Japan.

    No full text
    Rapid identification of positive blood cultures is important for initiation of optimal treatment in septic patients. Effects of automated, microarray-based rapid identification systems on antibiotic prescription against community-onset bacteremia (COB) remain unclear.We prospectively enrolled 177 patients with 185 COB episodes (occurring within 72 h of admission) over 17 months. Bacteremia episodes due to gram-positive bacteria (GP) and gram-negative bacteria (GN) in the same patient were counted separately. For GP bacteremia, patients with ≥2 sets of positive blood cultures were included. The primary study objective was evaluating the rates of antibiotic prescription changes within 2 days of rapid identification using the Verigene system.Bacteremia due to GN and GP included 144/185 (77.8%) and 41/185 (22.2%) episodes, respectively. Antibiotic prescription changes occurred in 51/185 cases (27.6% [95%CI:21.3-34.6%]) after Verigene analysis and 70/185 cases (37.8% [30.8-45.2%]) after conventional identification and susceptibility testing. Prescription changes after Verigene identification were more frequent in GP (17/41[41.5%]) than in GN (34/144[23.5%]). Among bacteremia due to single pathogen targeted by Verigene test, bacterial identification agreement between the two tests was high (GP: 38/39[97.4%], GN: 116/116[100%]). The Verigene test correctly predicted targeted antimicrobial resistance. The durations between the initiation of incubation and reporting of the results for the Verigene system and conventional test was 28.3 h (IQR: 25.8-43.4 h) and 90.6 h (68.3-118.4 h), respectively. In only four of the seven episodes of COB in which two isolates were identified by conventional tests, the Verigene test correctly identified both organisms.We observed a high rate of antibiotic prescription changes after the Verigene test in a population with COB especially in GP. The Verigene test would be a useful tool in antimicrobial stewardship programs among patients with COB

    High-Titer Anti-ZSCAN1 Antibodies in a Toddler Clinically Diagnosed with Apparent Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation Syndrome

    No full text
    Severe obesity in young children prompts for a differential diagnosis that includes syndromic conditions. Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) syndrome is a potentially fatal disorder characterized by rapid-onset obesity associated with hypoventilation, neural crest tumors, and endocrine and behavioral abnormalities. The etiology of ROHHAD syndrome remains to be established, but recent research has been focusing on autoimmunity. We report on a 2-year-old girl with rapid-onset obesity during the first year of life who progressed to hypoventilation and encephalitis in less than four months since the start of accelerated weight gain. The patient had a high titer of anti-ZSCAN1 antibodies (348; reference range < 40), and the increased values did not decline after acute phase treatment. Other encephalitis-related antibodies, such as the anti-NDMA antibody, were not detected. The rapid progression from obesity onset to central hypoventilation with encephalitis warns about the severe consequences of early-onset ROHHAD syndrome. These data indicate that serial measurements of anti-ZSCAN1 antibodies might be useful for the diagnosis and estimation of disease severity. Further research is needed to determine whether it can predict the clinical course of ROHHAD syndrome and whether there is any difference in antibody production between patients with and without tumors
    corecore