73 research outputs found

    Fine-Scale Staging of T Cell Lineage Commitment in Adult Mouse Thymus

    Get PDF
    T cell development is marked by the loss of alternative lineage choices accompanying specification and commitment to the T cell lineage. Commitment occurs between the CD4 and CD8 double-negative (DN) 2 and DN3 stages in mouse early T cells. To determine the gene regulatory changes that accompany commitment, we sought to distinguish and characterize the earliest committed wild-type DN adult thymocytes. A transitional cell population, defined by the first downregulation of surface c-Kit expression, was found to have lost the ability to differentiate into dendritic cells and NK cells when cultured without Notch-Delta signals. In the presence of Notch signaling, this subset generates T lineage descendants in an ordered precursor–product relationship between DN2, with the highest levels of surface c-Kit, and c-Kit–low DN3 cells. These earliest committed cells show only a few differences in regulatory gene expression, compared with uncommitted DN2 cells. They have not yet established the full expression of Notch-related and T cell differentiation genes characteristic of DN3 cells before β selection. Instead, the downregulation of select stem cell and non-T lineage genes appears to be key to the extinction of alternative lineage choices

    Launching the T-cell-lineage developmental programme

    Get PDF
    Multipotent blood progenitor cells enter the thymus and begin a protracted differentiation process in which they gradually acquire T-cell characteristics while shedding their legacy of developmental plasticity. Notch signalling and basic helix-loop-helix E-protein transcription factors collaborate repeatedly to trigger and sustain this process throughout the period leading up to T-cell lineage commitment. Nevertheless, the process is discontinuous with separately regulated steps that demand roles for additional collaborating factors. This Review discusses new evidence on the coordination of specification and commitment in the early T-cell pathway; effects of microenvironmental signals; the inheritance of stem-cell regulatory factors; and the ensemble of transcription factors that modulate the effects of Notch and E proteins, to distinguish individual stages and to polarize T-cell-lineage fate determination

    Lineage Divergence at the First TCR-Dependent Checkpoint: Preferential γδ and Impaired αβ T Cell Development in Nonobese Diabetic Mice

    Get PDF
    The first TCR-dependent checkpoint in the thymus determines αβ versus γδ T lineage fate and sets the stage for later T cell differentiation decisions. We had previously shown that early T cells in NOD mice that are unable to rearrange a TCR exhibit a defect in checkpoint enforcement at this stage. To determine if T cell progenitors from wild-type NOD mice also exhibit cellautonomous defects in development, we investigated their differentiation in the Notch-ligand–presenting OP9-DL1 coculture system, as well as by analysis of T cell development in vivo. Cultured CD4 and CD8 double-negative cells from NOD mice exhibited major defects in the generation of CD4 and CD8 double-positive αβ T cells, whereas γδ T cell development from bipotent precursors was enhanced. Limiting dilution and single-cell experiments show that the divergent effects on αβ and γδ T cell development did not spring from biased lineage choice but from increased proliferation of γδ T cells and impaired accumulation of αβ T lineage double-positive cells. In vivo, NOD early T cell subsets in the thymus also show characteristics indicative of defective β-selection, and peripheral αβ T cells are poorly established in mixed bone marrow chimeras, contrasting with strong γδ T as well as B cell repopulation. Thus, NOD T cell precursors reveal divergent, lineage-specific differentiation abnormalities in vitro and in vivo from the first TCR-dependent developmental choice point, which may have consequences for subsequent lineage decisions and effector functions

    Hematopoiesis and T-cell specification as a model developmental system

    Get PDF
    The pathway to generate T cells from hematopoietic stem cells guides progenitors through a succession of fate choices while balancing differentiation progression against proliferation, stage to stage. Many elements of the regulatory system that controls this process are known, but the requirement for multiple, functionally distinct transcription factors needs clarification in terms of gene network architecture. Here, we compare the features of the T-cell specification system with the rule sets underlying two other influential types of gene network models: first, the combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in complexity in most invertebrate embryos; second, the dueling ‘master regulator’ systems that are commonly used to explain bistability in microbial systems and in many fate choices in terminal differentiation. The T-cell specification process shares certain features with each of these prevalent models but differs from both of them in central respects. The T-cell system is highly combinatorial but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are not always T-lineage-specific, but they balance and modulate each other's activities long before any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for gene networks in vertebrate developmental systems

    Developmental gene networks: a triathlon on the course to T cell identity

    Get PDF
    Cells acquire their ultimate identities by activating combinations of transcription factors that initiate and sustain expression of the appropriate cell type-specific genes. T cell development depends on the progression of progenitor cells through three major phases, each of which is associated with distinct transcription factor ensembles that control the recruitment of these cells to the thymus, their proliferation, lineage commitment and responsiveness to T cell receptor signals, all before the allocation of cells to particular effector programmes. All three phases are essential for proper T cell development, as are the mechanisms that determine the boundaries between each phase. Cells that fail to shut off one set of regulators before the next gene network phase is activated are predisposed to leukaemic transformation

    Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice

    Get PDF
    The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel–deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel–deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes. We found that both CD4^+ and CD8^+ T cells from c-Rel–deficient NOD mice showed significantly decreased T-cell receptor–induced IL-2, IFN-γ, and GM-CSF expression. Despite compromised T-cell function, c-Rel deficiency dramatically accelerated insulitis and hyperglycemia in NOD mice along with a substantial reduction in T-regulatory (Treg) cell numbers. Supplementation of isogenic c-Rel–competent Treg cells from prediabetic NOD mice reversed the accelerated diabetes development in c-Rel–deficient NOD mice. The results suggest that c-Rel–dependent Treg cell function is critical in suppressing early-onset autoimmune diabetogenesis in NOD mice. This study provides a novel natural system to study autoimmune diabetes pathogenesis and reveals a previously unknown c-Rel–dependent mechanistic difference between chemically induced and spontaneous diabetogenesis. The study also reveals a unique protective role of c-Rel in autoimmune diabetes, which is distinct from other T-cell–dependent autoimmune diseases such as arthritis and experimental autoimmune encephalomyelitis, where c-Rel promotes autoimmunity

    A gene regulatory network armature for T lymphocyte specification

    Get PDF
    Choice of a T lymphoid fate by hematopoietic progenitor cells depends on sustained Notch–Delta signaling combined with tightly regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification, tests of the short-term Notch dependence of these gene expression changes, and analyses of the effects of overexpression of two essential transcription factors, namely PU.1 and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T cell precursors progress from primitive multipotency to T lineage commitment. Our analyses reveal separate contributions of Notch signaling, GATA-3 activity, and down-regulation of PU.1. Using BioTapestry (www.BioTapestry.org), the results have been assembled into a draft gene regulatory network for the specification of T cell precursors and the choice of T as opposed to myeloid/dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfi1 against Egr-2 and of TCF-1 against PU.1 as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose dependence of GATA-3 effects, the gene-specific modulation of PU.1 activity based on Notch activity, the lack of direct opposition between PU.1 and GATA-3, and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression

    Notch/Delta signaling constrains reengineering of pro-T cells by PU.1

    Get PDF
    PU.1 is essential for early stages of mouse T cell development but antagonizes it if expressed constitutively. Two separable mechanisms are involved: attenuation and diversion. Dysregulated PU.1 expression inhibits pro-T cell survival, proliferation, and passage through β-selection by blocking essential T cell transcription factors, signaling molecules, and Rag gene expression, which expression of a rearranged T cell antigen receptor transgene cannot rescue. However, Bcl2 transgenic cells are protected from this attenuation and may even undergo β-selection, as shown by PU.1 transduction of defined subsets of Bcl2 transgenic fetal thymocytes with differentiation in OP9-DL1 and OP9 control cultures. The outcome of PU.1 expression in these cells depends on Notch/Delta signaling. PU.1 can efficiently divert thymocytes toward a myeloid-like state with multigene regulatory changes, but Notch/Delta signaling vetoes diversion. Gene expression analysis distinguishes sets of critical T lineage regulatory genes with different combinatorial responses to PU.1 and Notch/Delta signals, suggesting particular importance for inhibition of E proteins, Myb, and/or Gfi1 (growth factor independence 1) in diversion. However, Notch signaling only protects against diversion of cells that have undergone T lineage specification after Thy-1 and CD25 up-regulation. The results imply that in T cell precursors, Notch/Delta signaling normally acts to modulate and channel PU.1 transcriptional activities during the stages from T lineage specification until commitment

    Loss of T Cell Progenitor Checkpoint Control Underlies Leukemia Initiation in Rag1-Deficient Nonobese Diabetic Mice

    Get PDF
    NOD mice exhibit major defects in the earliest stages of T cell development in the thymus. Genome-wide genetic and transcriptome analyses were used to investigate the origins and consequences of an early T cell developmental checkpoint breakthrough in Rag1-deficient NOD mice. Quantitative trait locus analysis mapped the presence of checkpoint breakthrough cells to several known NOD diabetes susceptibility regions, particularly insulin-dependent diabetes susceptibility genes (Idd)9/11 on chromosome 4, suggesting common genetic origins for T cell defects affecting this trait and autoimmunity. Genome-wide RNA deep-sequencing of NOD and B6 Rag1-deficient thymocytes revealed the effects of genetic background prior to breakthrough, as well as the cellular consequences of the breakthrough. Transcriptome comparison between the two strains showed enrichment in differentially expressed signal transduction genes, prominently tyrosine kinase and actin-binding genes, in accord with their divergent sensitivities to activating signals. Emerging NOD breakthrough cells aberrantly expressed both stem cell–associated proto-oncogenes, such as Lmo2, Hhex, Lyl1, and Kit, which are normally repressed at the commitment checkpoint, and post–β-selection checkpoint genes, including Cd2 and Cd5. Coexpression of genes characteristic of multipotent progenitors and more mature T cells persists in the expanding population of thymocytes and in the thymic leukemias that emerge with age in these mice. These results show that Rag1-deficient NOD thymocytes have T cell defects that can collapse regulatory boundaries at two early T cell checkpoints, which may predispose them to both leukemia and autoimmunity
    • …
    corecore