30 research outputs found

    Effects of cosmic strings with delayed scaling on CMB anisotropy

    Full text link
    The network of cosmic strings generated in a phase transition during inflation enters the scaling regime later than that of usual strings. If it occurs after the recombination, temperature anisotropies of the cosmic microwave background (CMB) at high multipole moments are significantly reduced. In this paper, we study such effects qualitatively and show that the constraint on the cosmic string tension from the CMB temperature anisotropies and B-mode polarizations can be relaxed. It is shown to be difficult to explain the recent BICEP2 and POLARBEAR results in terms of signals induced by cosmic strings alone even if we take into account the delayed scaling. However, the inflationary tensor-to-scalar ratio required to explain the observed B-mode signals can be slightly reduced to be consistent with the Planck constraint.Comment: 9 pages, 7 figures; v2: comments and references added, matches version published in PR

    Evading the pulsar constraints on the cosmic string tension in supergravity inflation

    Full text link
    The cosmic string is a useful probe of the early Universe and may give us a clue to physics at high energy scales where any artificial particle accelerators cannot reach. Although one of the most promising tools is the cosmic microwave background, the constraint from gravitational waves is becoming so stringent that one may not hope to detect its signatures in the cosmic microwave background. In this paper, we construct a scenario that contains cosmic strings observable in the cosmic microwave background while evading the constraint imposed by the recent pulsar timing data. We argue that cosmic strings with relatively large tension are allowed by delaying the onset of the scaling regime. We also show that this scenario is naturally realized in the context of chaotic inflation in supergravity, where the phase transition is governed by the Hubble induced mass.Comment: 24pages, 3 figures, published in JCA

    The Molecular Outflows in the rho Ophiuchi Main Cloud: Implications For Turbulence Generation

    Full text link
    We present the results of CO (J=3-2) and CO (J=1-0) mapping observations toward the active cluster forming clump, L1688, in the rho Ophiuchi molecular cloud. From the CO (J=3-2) and CO (J=1-0) data cubes, we identify five outflows, whose driving sources are VLA 1623, EL 32, LFAM 26, EL 29, and IRS 44. Among the identified outflows, the most luminous outflow is the one from the prototypical Class 0 source, VLA 1623. We also discover that the EL 32 outflow located in the Oph B2 region has very extended blueshifted and redshifted lobes with wide opening angles. This outflow is most massive and have the largest momentum among the identified outflows in the CO (J=1-0) map. We estimate the total energy injection rate due to the molecular outflows identified by the present and previous studies to be about 0.2 L_solar, larger than or at least comparable to the turbulence dissipation rate [~(0.03 - 0.1) L_solar]. Therefore, we conclude that the protostellar outflows are likely to play a significant role in replenishing the supersonic turbulence in this clump.Comment: 37 pages, 9 figures, accepted for publication in The Astrophysical Journa

    PPM1D controls nucleolar formation by up-regulating phosphorylation of nucleophosmin

    Get PDF
    An increase of nucleolar number and size has made nucleoli essential markers for cytology and tumour development. However, the underlying basis for their structural integrity and abundance remains unclear. Protein phosphatase PPM1D was found to be up-regulated in different carcinomas including breast cancers. Here, we demonstrate for the first time that PPM1D regulates nucleolar formation via inducing an increased phosphorylation of the nucleolar protein NPM. We show that PPM1D overexpression induces an increase in the nucleolar number regardless of p53 status. We also demonstrated that specific sequential phosphorylation of NPM is important for nucleolar formation and that PPM1D is a novel upstream regulator of this phosphorylation pathway. These results enhance our understanding of the molecular mechanisms that govern nucleoli formation by demonstrating that PPM1D regulates nucleolar formation by regulating NPM phosphorylation status through a novel signalling pathway, PPM1D-CDC25C-CDK1-PLK1
    corecore