13 research outputs found

    Maternal malaria but not schistosomiasis is associated with a higher risk of febrile infection in infant during the first 3 months of life: A mother-child cohort in Benin.

    Get PDF
    BACKGROUND: Malaria and schistosomiasis represent two of the most prevalent and disabling parasitic infections in developing countries. Few studies have evaluated the effect of maternal schistosomiasis and malaria in the peri-conceptional period on infant's risk of infection. METHODS: In Benin, women were followed from the preconception period until delivery. Subsequently, their children were followed from birth to 3 months of age. Pre-pregnancy malaria, malaria in pregnancy (MiP)-determined monthly using a thick blood smear-and urinary schistosomiasis-determined once before pregnancy and once at delivery using urine filtration-were the main maternal exposures. Infant's febrile infection (fever with respiratory, gastrointestinal and/or cutaneous clinical signs anytime during follow-up) was the main outcome. In a secondary analysis, we checked the relation of malaria and schistosomiasis with infant's hemoglobin (Hb) concentration. Both effects were separately assessed using logistic/mixed linear regression models. RESULTS: The prevalence of MiP was 35.7% with 10.8% occurring during the 1st trimester, and the prevalence of schistosomiasis was 21.8%. From birth to 3 months, 25.3% of infants had at least one episode of febrile infection. In multivariate analysis, MiP, particularly malaria in the 1st trimester, was significantly associated with a higher risk of infant's febrile infection (aOR = 4.99 [1.1; 22.6], p = 0.03). In secondary results, pre-pregnancy malaria and schistosomiasis were significantly associated with a lower infant's Hb concentration during the first 3 months. CONCLUSION: We evidenced the deleterious effect of maternal parasitic infections on infant's health. Our results argue in favor of the implementation of preventive strategies as early as in the peri-conception

    Poor maternal anthropometric status before conception is associated with a deleterious infant growth during the first year of life: a longitudinal preconceptional cohort.

    Get PDF
    BACKGROUND: According to the Developmental Origins of Health and Diseases concept, exposures in the preconception period may be critical. For the first time, we evaluated the effect of preconception poor anthropometric status on infant's growth in sub-Saharan Africa. METHODS: A mother-child cohort was followed prospectively from preconception to 1 year old in Benin. Maternal anthropometric status was assessed by prepregnancy body mass index (BMI), approximated by BMI at the first antenatal visit before 7 weeks' gestation, and gestational weight gain (GWG). BMI was categorized as underweight, normal, overweight, and obesity according to World Health Organization standards. GWG was categorized as low (12 kg). In infant, stunting and wasting were defined as length-for-age and weight-for-length z scores less than -2 SD, respectively. We evaluated the association between BMI/GWG and infant's weight and length at birth and during the first year of life, as well as with stunting and wasting at 12 months using mixed linear and logistic regression models. RESULTS: In multivariate, preconceptional underweight was associated with a lower infant's weight at birth and during the first year (-164 g; 95% CI, -307 to -22; and -342 g; 95% CI, -624 to -61, respectively) and with a higher risk of stunting at 12 months (adjusted odds ratio [aOR] = 3.98; 95% CI, 1.01-15.85). Furthermore, preconceptional obesity and a high GWG were associated with a higher weight and length at birth and during the first year. CONCLUSION: Underweight and obesity before conception as well as GWG were associated with infant's growth. These results argue for preventive interventions starting as early as the preconception period to support child long-term health

    BMJ Open

    Get PDF
    Introduction Neonatal sepsis outreaches all causes of neonatal mortality worldwide and remains a major societal burden in low and middle income countries. In addition to limited resources, endemic morbidities, such as malaria and prematurity, predispose neonates and infants to invasive infection by altering neonatal immune response to pathogens. Nevertheless, thoughtful epidemiological, diagnostic and immunological evaluation of neonatal sepsis and the impact of gestational malaria have never been performed. Methods and analysis A prospective longitudinal multicentre follow-up of 580 infants from birth to 3 months of age in urban and suburban Benin will be performed. At delivery, and every other week, all children will be examined and clinically evaluated for occurrence of sepsis. At delivery, cord blood systematic analysis of selected plasma and transcriptomic biomarkers (procalcitonin, interleukin (IL)-6, IL-10, IP10, CD74 and CX3CR1) associated with sepsis pathophysiology will be evaluated in all live births as well as during the follow-up, and when sepsis will be suspected. In addition, whole blood response to selected innate stimuli and extensive peripheral blood mononuclear cells phenotypic characterisation will be performed. Reference intervals specific to sub-Saharan neonates will be determined from this cohort and biomarkers performances for neonatal sepsis diagnosis and prognosis tested. Ethics and dissemination Ethical approval has been obtained from the Comité d’Ethique de la Recherche – Institut des Sciences Biomédicales Appliquées (CER-ISBA 85 - 5 April 2016, extended on 3 February 2017). Results will be disseminated through international presentations at scientific meetings and publications in peer-reviewed journals

    Les infections nosocomiales (l importance d un suivi épidémiologique et de l identification rapide des bactéries en cause)

    No full text
    Les infections nosocomiales, ou infections contractées au cours de soins hospitaliers, ont un impact majeur de santé publique. La prévalence de ces infections est de 7,1% dans les pays industrialisés, et de 10% à 15% dans les pays en voie de développement. Les unités de soins intensifs sont les services les plus touchés. Ces infections sont causées principalement par des bactéries. Le développement des infections nosocomiales s accompagne de morbi-mortalités importantes, entraînant des surcoûts hospitaliers estimés à 7 milliards d euros par an en Europe, 6,5 milliards de dollars par an aux USA. Ces infections nosocomiales sont pourtant évitables dans plus d un cas sur cinq. L augmentation de ces morbi-mortalités est en partie associée à la mise en place d une antibiothérapie empirique, bien souvent inadaptée et sans bénéfice clinique, à cause du temps nécessaire à l examen microbiologique. En effet, les méthodes conventionnelles d identification de pathogènes et de résistances aux antibiotiques, basées sur la culture des pathogènes, sont longues et laborieuses, avec un résultat obtenu plus de 2 à 5 jours après le prélèvement. Des techniques de diagnostic rapide existent, permettant de réduire ce délai à moins de 24h. Parmi ces techniques, sont décrites dans cette thèse la PCR en temps réel, la technique de FISH, la spectrométrie de masse MALDI-TOF et finalement la PCR couplée à la spectrométrie de masse, PCR-ESI. Ces techniques présentent de nombreux avantages pour l identification de pathogènes, mais ont besoin d être améliorées pour la détection d un plus large panel de résistances aux antibiotiques.GRENOBLE1-BU Médecine pharm. (385162101) / SudocSudocFranceF

    Isotope Coded Protein Labeling analysis of plasma specimens from acute severe dengue fever patients

    No full text
    Abstract Background Dengue fever is the most important arthropod born viral disease of public health significance. Although most patients suffer only from flu-like symptoms, a small group of patient experiences more severe forms of the disease. To contribute to a better understanding of its pathogenesis this study aims to identify proteins differentially expressed in a pool of five viremic plasma from severe dengue patients relative to a pool of five non-severe dengue patients. Results The use of Isotope Coded Protein Labeling (ICPLTM) to analyze plasma depleted of twenty high-abundance proteins allowed for the identification of 51 differentially expressed proteins, which were characterized by mass spectrometry. Using quantitative ELISA, three of these proteins (Leucine-rich glycoprotein 1, Vitamin D binding-protein and Ferritin) were confirmed as having an increased expression in a panel of severe dengue plasma. The proteins identified as overexpressed by ICPLTM in severe dengue plasma involve in clear up action after cell injury, tissue coherence and immune defense. Conclusion This ICPLTM study evaluating differences between acute severe dengue plasmas and acute non-severe dengue plasmas suggests that the three proteins identified are overexpressed early in the course of the disease. Their possible use as biomarkers for the prognostic of disease severity is discussed.</p

    Early and specific targeted mass spectrometry-based identification of bacteria in endotracheal aspirates of patients suspected with ventilator-associated pneumonia

    No full text
    International audienceRapid and reliable pathogen identification is compulsory to confirm ventilator-associated pneumonia (VAP) in order to initiate appropriate antibiotic treatment. In the present proof of concept, the effectiveness of rapid microorganism identification with a targeted bottom-up proteomics approach was investigated in endotracheal aspirate (ETA) samples of VAP patients. To do so, a prototype selected-reaction monitoring (SRM)-based assay was developed on a triple quadrupole mass spectrometer tracking proteotypic peptide surrogates of bacterial proteomes. Through the concurrent monitoring of 97 species-specific peptides, this preliminary assay was dimensioned to characterize the occurrence of six most frequent bacterial species responsible for over more than 65% of VAP. Assay performance was subsequently evaluated by analyzing early and regular 37 ETA samples collected from 15 patients. Twenty-five samples were above the significant threshold of 105 CFU/mL and five samples showed mixed infections (both pathogens ≥ 105 CFU/mL). The targeted proteomics assay showed 100% specificity for Acinetobacter baumannii, Escherichia coli, Haemophilus influenzae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. No false bacterial identification was reported and no interference was detected arising from the commensal flora. The overall species identification sensitivity was 19/25 (76%) and was higher at the patient level (84.6%). This successful proof of concept provides a rational to broaden the panel of bacteria for further clinical evaluation
    corecore