8 research outputs found

    Enhancement of the Electrical Properties of Graphene Grown by Chemical Vapor Deposition via Controlling the Effects of Polymer Residue

    No full text
    Residual polymer (here, poly­(methyl methacrylate), PMMA) left on graphene from transfer from metals or device fabrication processes affects its electrical and thermal properties. We have found that the amount of polymer residue left after the transfer of chemical vapor deposited (CVD) graphene varies depending on the initial concentration of the polymer solution, and this residue influences the electrical performance of graphene field-effect transistors fabricated on SiO<sub>2</sub>/Si. A PMMA solution with lower concentration gave less residue after exposure to acetone, resulting in less p-type doping in graphene and higher charge carrier mobility. The electrical properties of the weakly p-doped graphene could be further enhanced by exposure to formamide with the Dirac point at nearly zero gate voltage and a more than 50% increase of the room-temperature charge carrier mobility in air. This can be attributed to electron donation to graphene by the −NH<sub>2</sub> functional group in formamide that is absorbed in the polymer residue. This work provides a route to enhancing the electrical properties of CVD-grown graphene even when it has a thin polymer coating

    Synthesis of Oxide Interface-Based Two-Dimensional Electron Gas on Si

    No full text
    Two-dimensional electron gas (2DEG) at the interface of amorphous Al2O3/SrTiO3 (aAO/STO) heterostructures has received considerable attention owing to its convenience of fabrication and relatively high mobility. The integration of these 2DEG heterostructures on a silicon wafer is highly desired for electronic applications but remains challanging up to date. Here, conductive aAO/STO heterostructures have been synthesized on a silicon wafer via a growth-and-transfer method. A scanning transmission electron microscopy image shows flat and close contact between STO membranes and a Si wafer. Electron energy loss spectroscopic measurements reveal the interfacial Ti valence state evolution, which identifies the formation of 2D charge carriers confined at the interface of aAO/STO. This work provides a feasible strategy for the integration of 2DEG on a silicon wafer and other desired substrates for potential functional and flexible electronic devices

    Selective-Area Fluorination of Graphene with Fluoropolymer and Laser Irradiation

    No full text
    We have devised a method to selectively fluorinate graphene by irradiating fluoropolymer-covered graphene with a laser. This fluoropolymer produces active fluorine radicals under laser irradiation that react with graphene but only in the laser-irradiated region. The kinetics of C–F bond formation is dependent on both the laser power and fluoropolymer thickness, proving that fluorination occurs by the decomposition of the fluoropolymer. Fluorination leads to a dramatic increase in the resistance of the graphene while the basic skeletal structure of the carbon bonding network is maintained. Considering the simplicity of the fluorination process and that it allows patterning with a nontoxic fluoropolymer as a solid source, this method could find application to generate fluorinated graphene in graphene-based electronic devices such as for the electrical isolation of graphene

    Growth Mechanism and Controlled Synthesis of AB-Stacked Bilayer Graphene on Cu–Ni Alloy Foils

    No full text
    Strongly coupled bilayer graphene (<i>i.e.</i>, AB stacked) grows particularly well on commercial “90–10” Cu–Ni alloy foil. However, the mechanism of growth of bilayer graphene on Cu–Ni alloy foils had not been discovered. Carbon isotope labeling (sequential dosing of <sup>12</sup>CH<sub>4</sub> and <sup>13</sup>CH<sub>4</sub>) and Raman spectroscopic mapping were used to study the growth process. It was learned that the mechanism of graphene growth on Cu–Ni alloy is by precipitation at the surface from carbon dissolved in the bulk of the alloy foil that diffuses to the surface. The growth parameters were varied to investigate their effect on graphene coverage and isotopic composition. It was found that higher temperature, longer exposure time, higher rate of bulk diffusion for <sup>12</sup>C <i>vs</i> <sup>13</sup>C, and slower cooling rate all produced higher graphene coverage on this type of Cu–Ni alloy foil. The isotopic composition of the graphene layer(s) could also be modified by adjusting the cooling rate. In addition, large-area, AB-stacked bilayer graphene transferrable onto Si/SiO<sub>2</sub> substrates was controllably synthesized

    Flexible and Transparent Dielectric Film with a High Dielectric Constant Using Chemical Vapor Deposition-Grown Graphene Interlayer

    No full text
    We have devised a dielectric film with a chemical vapor deposited graphene interlayer and studied the effect of the graphene interlayer on the dielectric performance. The highly transparent and flexible film was a polymer/graphene/polymer ‘sandwich-structure’ fabricated by a one-step transfer method that had a dielectric constant of 51, with a dielectric loss of 0.05 at 1 kHz. The graphene interlayer in the film forms a space charge layer, <i>i.e.</i>, an accumulation of polarized charge carriers near the graphene, resulting in an induced space charge polarization and enhanced dielectric constant. The characteristic of the space charge layer for the graphene dielectric film, the sheet resistance of the graphene interlayer, was adjusted through thermal annealing that caused partial oxidation. The dielectric film with higher sheet resistance due to the oxidized graphene interlayer had a significantly lower dielectric constant compared to that with the graphene with lower interlayer sheet resistance. Oxidizing the graphene interlayer yields a smaller and thinner space charge density in the dielectric film, ultimately leading to decreased capacitance. Considering the simplicity of the fabrication process and high dielectric performance, as well as the high transparency and flexibility, this film is promising for applications in plastic electronics

    Simultaneous Transfer and Doping of CVD-Grown Graphene by Fluoropolymer for Transparent Conductive Films on Plastic

    No full text
    Chemical doping can decrease sheet resistance of graphene while maintaining its high transparency. We report a new method to simultaneously transfer and dope chemical vapor deposition grown graphene onto a target substrate using a fluoropolymer as both the supporting and doping layer. Solvent was used to remove a significant fraction of the supporting fluoropolymer, but residual polymer remained that doped the graphene significantly. This contrasts with a more widely used supporting layer, polymethylmethacrylate, which does not induce significant doping during transfer. The fluoropolymer doping mechanism can be explained by the rearrangement of fluorine atoms on the graphene basal plane caused by either thermal annealing or soaking in solvent, which induces ordered dipole moments near the graphene surface. This simultaneous transfer and doping of the graphene with a fluoropolymer increases the carrier density significantly, and the resulting monolayer graphene film exhibits a sheet resistance of ∌320 Ω/sq. Finally, the method presented here was used to fabricate flexible and a transparent graphene electrode on a plastic substrate

    Metal Contacts on Physical Vapor Deposited Monolayer MoS<sub>2</sub>

    No full text
    The understanding of the metal and transition metal dichalcogenide (TMD) interface is critical for future electronic device technologies based on this new class of two-dimensional semiconductors. Here, we investigate the initial growth of nanometer-thick Pd, Au, and Ag films on monolayer MoS<sub>2</sub>. Distinct growth morphologies are identified by atomic force microscopy: Pd forms a uniform contact, Au clusters into nanostructures, and Ag forms randomly distributed islands on MoS<sub>2</sub>. The formation of these different interfaces is elucidated by large-scale spin-polarized density functional theory calculations. Using Raman spectroscopy, we find that the interface homogeneity shows characteristic Raman shifts in E<sub>2g</sub><sup>1</sup> and A<sub>1g</sub> modes. Interestingly, we show that insertion of graphene between metal and MoS<sub>2</sub> can effectively decouple MoS<sub>2</sub> from the perturbations imparted by metal contacts (<i>e.g.</i>, strain), while maintaining an effective electronic coupling between metal contact and MoS<sub>2</sub>, suggesting that graphene can act as a conductive buffer layer in TMD electronics

    Thermal Oxidation of WSe<sub>2</sub> Nanosheets Adhered on SiO<sub>2</sub>/Si Substrates

    No full text
    Because of the drastically different intralayer versus interlayer bonding strengths, the mechanical, thermal, and electrical properties of two-dimensional (2D) materials are highly anisotropic between the in-plane and out-of-plane directions. The structural anisotropy may also play a role in chemical reactions, such as oxidation, reduction, and etching. Here, the composition, structure, and electrical properties of mechanically exfoliated WSe<sub>2</sub> nanosheets on SiO<sub>2</sub>/Si substrates were studied as a function of the extent of thermal oxidation. A major component of the oxidation, as indicated from optical and Raman data, starts from the nanosheet edges and propagates laterally toward the center. Partial oxidation also occurs in certain areas at the surface of the flakes, which are shown to be highly conductive by microwave impedance microscopy. Using secondary ion mass spectroscopy, we also observed extensive oxidation at the WSe<sub>2</sub>–SiO<sub>2</sub> interface. The combination of multiple microcopy methods can thus provide vital information on the spatial evolution of chemical reactions on 2D materials and the nanoscale electrical properties of the reaction products
    corecore