20 research outputs found

    TAG : Type Auxiliary Guiding for Code Comment Generation

    Full text link
    Existing leading code comment generation approaches with the structure-to-sequence framework ignores the type information of the interpretation of the code, e.g., operator, string, etc. However, introducing the type information into the existing framework is non-trivial due to the hierarchical dependence among the type information. In order to address the issues above, we propose a Type Auxiliary Guiding encoder-decoder framework for the code comment generation task which considers the source code as an N-ary tree with type information associated with each node. Specifically, our framework is featured with a Type-associated Encoder and a Type-restricted Decoder which enables adaptive summarization of the source code. We further propose a hierarchical reinforcement learning method to resolve the training difficulties of our proposed framework. Extensive evaluations demonstrate the state-of-the-art performance of our framework with both the auto-evaluated metrics and case studies.Comment: ACL 2020, Accepte

    Effect of Cl/S and Na interaction on ash deposition mechanism at the inlet of Shell gasifier syngas cooler

    Get PDF
    The Shell dry pulverized coal pressurized gasification is one of the important technologies for the clean and efficient utilization of coal. Ash deposition at the inlet of the syngas cooler caused by alkali metal compounds is the main reason for the unscheduled shutdown of the gasifier. The effect of Cl/S and Na interaction on ash deposition is studied by adding different contents of Na, Cl and S to the raw fly ash. The ash deposition experiment is conducted by using the deposition probe in the self-built high temperature vertical furnace. The ash deposition behavior is studied by separating it into inner layer and the outer layer. The mass changes of the inner and outer ash deposits are discussed. The physicochemical properties of the inner and outer ash deposits are compared and analyzed by means of ICP-MS, IC, SEM-EDS and XRD. The influence of the interaction among elements such as Cl, S and Fe on the ash deposition behavior is obtained. The results show that the mass of inner ash deposits increases with time. The addition of compounds containing S reduces the mass of both the inner and outer ash deposits. And the mass of outer ash deposits decreases with time. The Na in the form of aluminosilicate promotes the growth of ash deposit in the outer layer. The Cl is enriched in the initial viscous layer in the form of alkali metal chloride. The existence of S slows down the pipeline dust deposition. In the presence of Cl and S, the Fe reacts with Si, Al and Na and generates a variety of low temperature eutectic, promoting the melting of inner and outer ash deposition. The formation mechanism of ash deposit at the inlet of the Shell gasifier syngas cooler is as follows: firstly, under the interaction among the Na, Cl, Si and Al, the alkali metal chloride and aluminosilicate deposit in the inner layer. At the same time, the existence of Cl and S combine with Fe and Na to form Fe-O-Si, Fe-O-S and Fe-Na-O-Al-S eutectic. Then, the melting of aluminosilicate and various low temperature eutectic increase the size of ash particles and promote the further growth of ash deposition

    New insights into Ī²-glucan-enhanced immunity in largemouth bass Micropterus salmoides by transcriptome and intestinal microbial composition

    Get PDF
    Ī²-glucan is widely used in aquaculture due to its immunostimulatory effects, but the specific effect and potential regulatory mechanism on largemouth bass (Micropterus salmoides) are still unclear. Here, we evaluated the effects of Ī²-glucan on growth, resistance to Aeromonas schubertii, intestinal health, and transcriptome of largemouth bass to reveal the potential regulators, metabolic pathways, and altered differential microbiota. Four experimental diets were designed with Ī²-glucan supplementation levels of 0 (control), 100 (LA-100), 200 (MA-200), and 300 (HA-300) mg kg-1, and each diet was fed to largemouth bass (79.30 Ā± 0.50Ā g) in triplicate for 70 days, followed by a 3-day challenge experiment. Results showed that different Ī²-glucan supplementations had no significant effects on growth performance and whole-body composition. Fish fed a diet with 300 mg kg-1 Ī²-glucan significantly increased the activity of lysozyme than those fed diets with 0 and 100 mg kg-1 Ī²-glucan. In addition, the survival rate of largemouth bass in Ī²-glucan supplementation groups was significantly higher than the control group at 12- and 24-h challenge by Aeromonas schubertii. Transcriptome analysis showed that a total of 1,245 genes were differentially expressed [|log2(fold change)| ā‰„1, q-value ā‰¤0.05], including 109 immune-related differentially expressed genes (DEGs). Further analysis revealed that significantly upregulated and downregulated DEGs associated with immunity were mapped into 12 and 24 pathways, respectively. Results of intestinal microflora indicated that fish fed a diet with 300 mg kg-1 Ī²-glucan had higher bacterial richness and diversity as evaluated by Sobs, Chao, Ace, and Simpson indices, but no significant differences were found in the comparison groups. Furthermore, 300 mg kg-1 Ī²-glucan significantly increased the relative abundance of Mycoplasma and decreased Proteobacteria (mainly Escherichia-Shigella and Escherichia coli) and Bacillus anthracis in largemouth bass intestinal microflora. The findings of this study provided new insights that will be valuable in future studies to elucidate the mechanism of immunity enhancement by Ī²-glucan

    Post-transcriptional regulation of androgen receptor mRNA by an ErbB3 binding protein 1 in prostate cancer

    Get PDF
    Androgen receptor (AR)-mediated pathways play a critical role in the development and progression of prostate cancer. However, little is known about the regulation of AR mRNA stability and translation, two central processes that control AR expression. The ErbB3 binding protein 1 (EBP1), an AR corepressor, negatively regulates crosstalk between ErbB3 ligand heregulin (HRG)-triggered signaling and the AR axis, affecting biological properties of prostate cancer cells. EBP1 protein expression is also decreased in clinical prostate cancer. We previously demonstrated that EBP1 overexpression results in decreased AR protein levels by affecting AR promoter activity. However, EBP1 has recently been demonstrated to be an RNA binding protein. We therefore examined the ability of EBP1 to regulate AR post-transcriptionally. Here we show that EBP1 promoted AR mRNA decay through physical interaction with a conserved UC-rich motif within the 3ā€²-UTR of AR. The ability of EBP1 to accelerate AR mRNA decay was further enhanced by HRG treatment. EBP1 also bound to a CAG-formed stem-loop in the 5ā€² coding region of AR mRNA and was able to inhibit AR translation. Thus, decreases of EBP1 in prostate cancer could be important for the post-transcriptional up-regulation of AR contributing to aberrant AR expression and disease progression

    Spatiotemporal Distributions and Related Large-Scale Environmental Conditions of Extreme Rainfall from Tropical Cyclones with Different Tracks and Seasons in Guangxi, South China: A Comparative Climatological Study

    No full text
    This study investigates the main climatological features of extreme precipitation (TCER) induced by tropical cyclones (TCs) affecting Guangxi (GX), South China using multiple datasets and a 99th percentile threshold during 1981ā€“2020, with an emphasis on the rainfall diversities of different high-impact TC groups and their associated mechanisms. Results show that there are large regional differences and a seasonal imbalance in the climatological features of TCER in GX. In summer (fall), TCs with TCER events primarily move northward or eastward (northwestward or westward), namely, S-NWTCs and S-ETCs (F-WTCs and F-NWTCs). The rainfall centers exhibit asymmetrical features with S-NWTCs and F-NWTCs located in the northeast quadrant, but S-ETCs and F-WTCs in the southwest and northeast quadrants, respectively. Comparisons of atmospheric circulations and environmental factors indicate that the intense rainfall of F-WTCs is mainly attributed to the troughā€“TC interaction, which is accompanied by stronger upper-level westerly jet and cold air intrusion, thus increasing baroclinic energy and uplifting for the strongest rainfall among these four groups. This interaction is absent for other groups due to a greater South Asian high and western North Pacific subtropical high. Instead, the increased rainfall in S-NWTCs and F-NWTCs can mainly be attributed to the stronger low-level southwesterly jet, which, in combination with low-level warm advection and convergence induced by landā€“sea friction, promotes the release of latent heat through moisture condensation. S-ETCs differ from S-NWTCs and F-NWTCs in that moisture convergence is weaker due to the much-weakened TC circulation

    New type of borneol-based fluorine-free superhydrophobic antibacterial polymeric coating

    No full text
    A new type of superhydrophobic borneol-based polymeric coating has been prepared. The chemical composition of the polymer particles was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, which showed that the polymer did not contain fluorine, which can effectively avoid the cytotoxic risk of fluorine. By dynamic light scattering, scanning electron microscopy, and static contact angle measurement, the contact angle of the prepared coating gradually increased with increasing diameter of the polymer particles, and a superhydrophobic coating surface was finally obtained. Interestingly, after dissolving the superhydrophobic sample with tetrahydrofuran and making it a normal hydrophobic sample, the antiadhesion performance for E. coli was greatly reduced, and it could not effectively prevent E. coli adhesion. In addition, a long-term antiadhesion study of bacteria was performed. The superhydrophobic borneol-based polymer coating showed long-term resistance to E. coli adhesion. Therefore, the excellent antibacterial properties and cell compatibility mean that this series of polymer materials has great potential in the field of biomedicine

    The Interannual Relationship between the Diabatic Heating over the South Asia and the Snow Depth over the Southern Tibetan Plateau in Late Spring to Early Summer: Roles of the Air Temperature

    No full text
    The southern Tibetan Plateau (TP) is snow covered during cold season but exhibits faster snow melting in early summer. Using in situ observations and improved satellite-derived data, the present study indicates that the snow depth (SD) over the southern TP exhibits distinction characteristics between late spring (i.e., P1: April 16thā€“May 15th) and early summer (i.e., P2: May 16thā€“June 14th). In terms of climate states, the snow melting rate over the southern TP in P2 is faster than that in P1. The acceleration of snow melting during P2 is mainly found over high elevation areas caused by the increase of local air temperature. Diagnoses of the thermodynamic equation further demonstrate that the warming over the southern TP during the two periods is mainly attributed to the meridional temperature advection and diabatic heating in situ. On the interannual time scale, the SD over the southern TP is closely related to diabatic heating over South Asia. During P1, the diabatic cooling from the southern Bay of Bengal eastward to the western South China Sea suppresses convection over the Bay of Bengal and southern TP and has resulted in an upper-level anomalous cyclone and cold temperature anomalies from the surface to 200ā€‰hPa over the southern TP, favoring the above-normal SD over the southern TP. On the other hand, SD over the southern TP in P2 is closely related to diabatic cooling over the northern Indochina Peninsula and diabatic heating over the southern China. But we could not prove that these diabatic heating anomalies can affect the SD over the southern TP by modulating local surface air temperature. This may be limited by the quality of the data and the simulation capability of the simple model

    Impact of metal oxide nanoparticles on in vitro DNA amplification.

    No full text
    Polymerase chain reaction (PCR) is used as an in vitro model system of DNA replication to assess the genotoxicity of nanoparticles (NPs). Prior results showed that several types of NPs inhibited PCR efficiency and increased amplicon error frequency. In this study, we examined the effects of various metal oxide NPs on inhibiting PCR, using high- vs. low-fidelity DNA polymerases; we also examined NP-induced DNA mutation bias at the single nucleotide level. The effects of seven major types of metal oxide NPs (Fe2O3, ZnO, CeO2, Fe3O4, Al2O3, CuO, and TiO2) on PCR replication via a low-fidelity DNA polymerase (Ex Taq) and a high-fidelity DNA polymerase (Phusion) were tested. The successfully amplified PCR products were subsequently sequenced using high-throughput amplicon sequencing. Using consistent proportions of NPs and DNA, we found that the effects of NPs on PCR yield differed depending on the DNA polymerase. Specifically, the efficiency of the high-fidelity DNA polymerase (Phusion) was significantly inhibited by NPs during PCR; such inhibition was not evident in reactions with Ex Taq. Amplicon sequencing showed that the overall error rate of NP-amended PCR was not significantly different from that of PCR without NPs (p > 0.05), and NPs did not introduce single nucleotide polymorphisms during PCR. Thus, overall, NPs inhibited PCR amplification in a DNA polymerase-specific manner, but mutations were not introduced in the process

    Genomic epidemiology and ceftazidime-avibactam high-level resistance mechanisms of Pseudomonas aeruginosa in China from 2010 to 2022

    No full text
    ABSTRACTCeftazidime-avibactam (CZA) resistance is a huge threat in the clinic; however, the underlying mechanism responsible for high-level CZA resistance in Pseudomonas aeruginosa (PA) isolates remains unknown. In this study, a total of 5,763 P. aeruginosa isolates were collected from 2010 to 2022 to investigate the ceftazidime-avibactam (CZA) high-level resistance mechanisms of Pseudomonas aeruginosa (PA) isolates in China. Fifty-six PER-producing isolates were identified, including 50 isolates carrying blaPER-1 in PA, and 6 isolates carrying blaPER-4. Of these, 82.1% (46/56) were classified as DTR-PA isolates, and 76.79% (43/56) were resistant to CZA. Importantly, blaPER-1 and blaPER-4 overexpression led to 16-fold and >1024-fold increases in the MICs of CZA, respectively. WGS revealed that the blaPER-1 gene was located in two different transferable IncP-2-type plasmids and chromosomes, whereas blaPER-4 was found only on chromosomes and was carried by a class 1 integron embedded in a Tn6485-like transposon. Overexpression of efflux pumps may be associated with high-level CZA resistance in blaPER-1-positive strains. Kinetic parameter analysis revealed that PER-4 exhibited a similar kcat/Km with ceftazidime and a high (āˆ¼3359-fold) IC50 value with avibactam compared to PER-1. Our study found that overexpression of PER-1 combined with enhanced efflux pump expression and the low affinity of PER-4 for avibactam contributes to high-level resistance to CZA. Additionally, the Tn6485-like transposon plays a significant role in disseminating blaPER. Urgent active surveillance is required to prevent the further spread of high-level CZA resistance in DTR-PA isolates
    corecore