159 research outputs found

    Development of microencapsulated phase change material with poly (methyl methacrylate) shell for thermal energy storage

    Get PDF
    This research focused on the development of MEPCMs for thermal energy storage in low carbon buildings with poly (methyl methacrylate) (PMMA) shell. The experimental results showed that the best MEPCM sample was prepared with 1 wt% of the thermal initiator and the surfactant of S-1DS. The differential scanning calorimetric (DSC) analysis showed that the best sample has a latent heat of 170 kJ/kg and a melting temperature of 22.68 ℃. Meanwhile, the core material contents and encapsulation efficiencies were calculated according to the measured results of the DSC. Those two values for the sample of PMMA-3 and PMMA-5 were even higher than theoretical values due to the evaporation of shell monomer during encapsulation processes. Finally, the thermogravimetric (TG) analysis of the fabricated MEPCM samples showed good thermal stability behaviors above 161 ℃ and therefore satisfy the environmental requirements for most applications

    Mouse Embryonic Fibroblasts-Derived Extracellular Matrix Facilitates Expansion of Inner Ear-Derived Cells

    Get PDF
    Objective: Previous reports showed that mouse embryonic fibroblasts (MEFs) could support pluripotent stem cell selfrenewaland maintain their pluripotency. The goal of this study was to reveal whether the decellularized extracellularmatrix derived from MEFs (MEF-ECM) is beneficial to promote the proliferation of inner ear-derived cells.Materials and Methods: In this experimental study, we prepared a cell-free MEF-ECM through decellularization.Scanning electron microscope (SEM) and immunofluorescent staining were conducted for phenotype characterization.Organs of Corti were dissected from postnatal day 2 and the inner ear-derived cells were obtained. The identificationof inner ear-derived cells was conducted by using reverse transcription-polymerase chain reaction (RT-PCR). Cellcounting kit-8 (CCK-8) was used to evaluate the proliferation capability of inner ear-derived cells cultured on the MEFECMand tissue culture plate (TCP).Results: The MEF-ECM was clearly observed after decellularization via SEM, and the immunofluorescence stainingresults revealed that MEF-ECM was composed of three proteins, including collagen I, fibronectin and laminin. Mostimportantly, the results of CCK-8 showed that compared with TCP, MEF-ECM could effectively facilitate the proliferationof inner ear-derived cells.Conclusion: The discovery of the potential of MEF-ECM in promoting inner ear-derived cell proliferation indicatesthat the decellularized matrix microenvironment may play a vital role in keeping proliferation ability of these cells. Ourfindings indicate that the use of MEF-ECM may serve as a novel approach for expanding inner ear-derived cells andpotentially facilitating the clinical application of inner ear-derived cells for hearing loss in the future

    CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1

    Get PDF
    <p>Macroautophagy/autophagy is an important intracellular mechanism for the maintenance of cellular homeostasis. Here we show that the <i>CERKL</i> (ceramide kinase like) gene, a retinal degeneration (RD) pathogenic gene, plays a critical role in regulating autophagy by stabilizing SIRT1. <i>In vitro</i> and <i>in vivo</i>, suppressing CERKL results in impaired autophagy. SIRT1 is one of the main regulators of acetylation/deacetylation in autophagy. In CERKL-depleted retinas and cells, SIRT1 is downregulated. ATG5 and ATG7, 2 essential components of autophagy, show a higher degree of acetylation in CERKL-depleted cells. Overexpression of SIRT1 rescues autophagy in CERKL-depleted cells, whereas CERKL loses its function of regulating autophagy in SIRT1-depleted cells, and overexpression of CERKL upregulates SIRT1. Finally, we show that CERKL directly interacts with SIRT1, and may regulate its phosphorylation at Ser27 to stabilize SIRT1. These results show that CERKL is an important regulator of autophagy and it plays this role by stabilizing the deacetylase SIRT1.</p

    Spatiotemporal changes and driving factors of reference evapotranspiration and crop evapotranspiration for cotton production in China from 1960 to 2019

    Get PDF
    Introduction: Understanding and tracking changes in crop water requirements is crucial for effective irrigation, water planning, and future decisions. Determining the reference evapotranspiration (ETO) and crop evapotranspiration (ETC) of China cotton is essential for water resource management.Methods: This study analyzed the spatiotemporal changes in ETO and ETC at 248 standard stations in cotton production regions of China from 1960 to 2019, and the ETO and ETC of each station were quantified by using the CropWat 8.0 and non-parametric Mann-Kendall test. The impacts of climate change on ETO and ETC were evaluated by analyzing the contribution rate and sensitivity coefficient of climate change.Discussion: The results revealed distinct distributions of ETO and ETC across various growth stages and spatial scales in the cotton production regions of China. In the Huanghe Valley, the rate of decline for ETO decreased from 787.23 mm to 769.84 mm, while in the Yangtze Valley cotton region, it decreased from 749.19 mm to 735.01 mm. Similarly, in the Northwest inland cotton regions, the rate of decline for ETO reduced from 991.19 mm to 982.70 mm. As for ETC, the rate of decline decreased from 677.62 mm to 654.33 mm in the Huanghe Valley, from 653.02 mm to 625.50 mm in the Yangtze Valley, and from 916.25 mm to 886.74 mm in the Northwest inland cotton regions. ETO was highly sensitive to maximum air temperature (Tmax), followed by relative humidity (RH), sunshine duration (SD), wind speed at 2 m height (WS), and minimum air temperature (Tmin). WS was the most influential climate variable associated with ETO change, followed by Tmax, SD, RH, and Tmin. Significant declines in WS and SD were indicated in the decrease in ETO in the Huanghe Valley and Yangtze Valley cotton regions. WS showed a significant decrease in ETO in the northwestern inland cotton region. However, decreased RH and increased temperature commonly reversed the trend of ETO from 2000 to 2019, and the northwestern inland cotton region had the most significant upward trend. Amidst high temperatures and drought stress, the irrigation needs of cotton were rising, posing a significant threat to both cotton production and water resources

    Tulp1 deficiency causes early-onset retinal degeneration through affecting ciliogenesis and activating ferroptosis in zebrafish

    Get PDF
    Mutations in TUB-like protein 1 (TULP1) are associated with severe early-onset retinal degeneration in humans. However, the pathogenesis remains largely unknown. There are two homologous genes of TULP1 in zebrafish, namely tulp1a and tulp1b. Here, we generated the single knockout (tulp1a(−/−) and tulp1b(−/−)) and double knockout (tulp1-dKO) models in zebrafish. Knockout of tulp1a resulted in the mislocalization of UV cone opsins and the degeneration of UV cones specifically, while knockout of tulp1b resulted in mislocalization of rod opsins and rod-cone degeneration. In the tulp1-dKO zebrafish, mislocalization of opsins was present in all types of photoreceptors, and severe degeneration was observed at a very early age, mimicking the clinical manifestations of TULP1 patients. Photoreceptor cilium length was significantly reduced in the tulp1-dKO retinas. RNA-seq analysis showed that the expression of tektin2 (tekt2), a ciliary and flagellar microtubule structural component, was downregulated in the tulp1-dKO zebrafish. Dual-luciferase reporter assay suggested that Tulp1a and Tulp1b transcriptionally activate the promoter of tekt2. In addition, ferroptosis might be activated in the tulp1-dKO zebrafish, as suggested by the up-regulation of genes related to the ferroptosis pathway, the shrinkage of mitochondria, reduction or disappearance of mitochondria cristae, and the iron and lipid droplet deposition in the retina of tulp1-dKO zebrafish. In conclusion, our study establishes an appropriate zebrafish model for TULP1-associated retinal degeneration and proposes that loss of TULP1 causes defects in cilia structure and opsin trafficking through the downregulation of tekt2, which further increases the death of photoreceptors via ferroptosis. These findings offer insight into the pathogenesis and clinical treatment of early-onset retinal degeneration

    Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration

    Get PDF
    Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish
    • …
    corecore