3,099 research outputs found

    Self-Similar Blowup Solutions to the 2-Component Degasperis-Procesi Shallow Water System

    Full text link
    In this article, we study the self-similar solutions of the 2-component Degasperis-Procesi water system:% [c]{c}% \rho_{t}+k_{2}u\rho_{x}+(k_{1}+k_{2})\rho u_{x}=0 u_{t}-u_{xxt}+4uu_{x}-3u_{x}u_{xx}-uu_{xxx}+k_{3}\rho\rho_{x}=0. By the separation method, we can obtain a class of self-similar solutions,% [c]{c}% \rho(t,x)=\max(\frac{f(\eta)}{a(4t)^{(k_{1}+k_{2})/4}},\text{}0),\text{}u(t,x)=\frac{\overset{\cdot}{a}(4t)}{a(4t)}x \overset{\cdot\cdot}{a}(s)-\frac{\xi}{4a(s)^{\kappa}}=0,\text{}a(0)=a_{0}% \neq0,\text{}\overset{\cdot}{a}(0)=a_{1} f(\eta)=\frac{k_{3}}{\xi}\sqrt{-\frac{\xi}{k_{3}}\eta^{2}+(\frac{\xi}{k_{3}}\alpha) ^{2}}% where η=xa(s)1/4\eta=\frac{x}{a(s)^{1/4}} with s=4t;s=4t; κ=k12+k2−1,\kappa=\frac{k_{1}}{2}% +k_{2}-1, α≥0,\alpha\geq0, ξ<0\xi<0, a0a_{0} and a1a_{1} are constants. which the local or global behavior can be determined by the corresponding Emden equation. The results are very similar to the one obtained for the 2-component Camassa-Holm equations. Our analytical solutions could provide concrete examples for testing the validation and stabilities of numerical methods for the systems. With the characteristic line method, blowup phenomenon for k3≥0k_{3}\geq0 is also studied.Comment: 13 Pages, Key Words: 2-Component Degasperis-Procesi, Shallow Water System, Analytical Solutions, Blowup, Global, Self-Similar, Separation Method, Construction of Solutions, Moving Boundary, 2-Component Camassa-Holm Equation

    The Finite-time Ruin Probabilities of a Bidimensional risk model with Constant Interest Force and correlated Brownian Motions

    Full text link
    We follow some recent works to study bidimensional perturbed compound Poisson risk models with constant interest force and correlated Brownian Motions. Several asymptotic formulae for three different type of ruin probabilities over a finite-time horizon are established. Our approach appeals directly to very recent developments in the ruin theory in the presence of heavy tails of unidimensional risk models and the dependence theory of stochastic processes and random vectors.Comment: 25page

    Molecular emission near metal interfaces: the polaritonic regime

    Full text link
    The strong coupling of a dense layer of molecular excitons with surface-plasmon modes in a metal gives rise to polaritons (hybrid light-matter states) called plexcitons. Surface plasmons cannot directly emit into (or be excited by) free-space photons due to the fact that energy and momentum conservation cannot be simultaneously satisfied in photoluminescence. Most plexcitons are also formally non-emissive, even though they can radiate via molecules upon localization due to disorder and decoherence. However, a fraction of them are bright even in the presence of such deleterious processes. In this letter, we theoretically discuss the superradiant emission properties of these bright plexcitons, which belong to the upper energy branch and reveal huge photoluminescence enhancements compared to bare excitons. Our study generalizes the well-known problem of molecular emission next to a metal interface to collective molecular states and provides new design principles for the control of photophysical properties of molecular aggregates using polaritonic strategies.Comment: Replaced previous version, noticing that van Hove anomalies are only observed in the direct and reflected contributions of photoluminescence, but they cancel out when added up in the total photoluminescence. The correct phenomenology is that enhancements of photoluminescence are still huge (not infinite) and are near (not exactly at) the critical poin
    • …
    corecore