3,950 research outputs found

    Clustering of childhood leukaemia in Hong Kong: association with the childhood peak and common acute lymphoblastic leukaemia and with population mixing.

    Get PDF
    Incidence data of childhood leukaemia (CL) in Hong Kong (1984-90) have been analysed for evidence of variation between small areas. All cases (n=261) were classified by morphological cell type, with the majority (n=205) being acute lymphoblastic leukaemia (ALL), and haematological review has permitted immunophenotypic classification for 73% of these. The data have been examined for evidence of spatial clustering within small census areas (TPUs) and for association with population mixing, with attention focused on those subgroups (especially the childhood peak of ALL--taken here to be diagnoses in children from 24 months up to the seventh birthday--and common ALL) which, it has been hypothesized, may be caused by unusual patterns of exposure and response to common infections. For the whole of Hong Kong, there was evidence of spatial clustering of ALL at ages 0-4 years (P = 0.09) and in the childhood peak (P<0.05). When these analyses were restricted to TPUs where extreme population mixing may have occurred, overall incidence was elevated and significant evidence of clustering was found for ALL (P<0.007) at these ages and for the common ALL in the childhood peak (P = 0.032). Replication of the analyses for subsets of leukaemia that were not dominated by the childhood peak of ALL found no evidence of clustering. This is the first investigation of an association between population mixing and childhood leukaemia in Asia and the first to include clustering and to consider particular subsets. The results are supportive of the 'infectious' aetiology hypothesis for subsets of childhood leukaemia, specifically common ALL in the childhood peak

    Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation

    Full text link
    We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of point dipoles, in an attempt to examine the effects of geometric anisotropy on the local field distribution. The various problems encountered in the computation of the conditionally convergent summation of the near field are addressed and the methods of overcoming them are discussed. The results show that the geometric anisotropy has a significant impact on the local field distribution. The change in the local field can lead to a generalized Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte

    Quantum Detection with Unknown States

    Full text link
    We address the problem of distinguishing among a finite collection of quantum states, when the states are not entirely known. For completely specified states, necessary and sufficient conditions on a quantum measurement minimizing the probability of a detection error have been derived. In this work, we assume that each of the states in our collection is a mixture of a known state and an unknown state. We investigate two criteria for optimality. The first is minimization of the worst-case probability of a detection error. For the second we assume a probability distribution on the unknown states, and minimize of the expected probability of a detection error. We find that under both criteria, the optimal detectors are equivalent to the optimal detectors of an ``effective ensemble''. In the worst-case, the effective ensemble is comprised of the known states with altered prior probabilities, and in the average case it is made up of altered states with the original prior probabilities.Comment: Refereed version. Improved numerical examples and figures. A few typos fixe

    Quantum superposition of multiple clones and the novel cloning machine

    Get PDF
    we envisage a novel quantum cloning machine, which takes an input state and produces an output state whose success branch can exist in a linear superposition of multiple copies of the input state and the failure branch exist in a superposition of composite state independent of the input state. We prove that unknown non-orthogonal states chosen from a set S\cal S can evolve into a linear superposition of multiple clones by a unitary process if and only if the states are linearly independent. We derive a bound on the success probability of the novel cloning machine. We argue that the deterministic and probabilistic clonings are special cases of our novel cloning machine.Comment: Two column, 5 pages, Latex, some additions, minor changes. Phys. Rev. Lett. (To appear, 1999

    Unconditional Continuous Variable Dense Coding

    Get PDF
    We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology

    Using entanglement improves precision of quantum measurements

    Full text link
    We show how entanglement can be used to improve the estimation of an unknown transformation. Using entanglement is always of benefit, in improving either the precision or the stability of the measurement. Examples relevant for applications are illustrated, for either qubits and continuous variable

    Adaptive phase estimation is more accurate than non-adaptive phase estimation for continuous beams of light

    Get PDF
    We consider the task of estimating the randomly fluctuating phase of a continuous-wave beam of light. Using the theory of quantum parameter estimation, we show that this can be done more accurately when feedback is used (adaptive phase estimation) than by any scheme not involving feedback (non-adaptive phase estimation) in which the beam is measured as it arrives at the detector. Such schemes not involving feedback include all those based on heterodyne detection or instantaneous canonical phase measurements. We also demonstrate that the superior accuracy adaptive phase estimation is present in a regime conducive to observing it experimentally.Comment: 15 pages, 9 figures, submitted to PR

    Nonlinear ac response of anisotropic composites

    Full text link
    When a suspension consisting of dielectric particles having nonlinear characteristics is subjected to a sinusoidal (ac) field, the electrical response will in general consist of ac fields at frequencies of the higher-order harmonics. These ac responses will also be anisotropic. In this work, a self-consistent formalism has been employed to compute the induced dipole moment for suspensions in which the suspended particles have nonlinear characteristics, in an attempt to investigate the anisotropy in the ac response. The results showed that the harmonics of the induced dipole moment and the local electric field are both increased as the anisotropy increases for the longitudinal field case, while the harmonics are decreased as the anisotropy increases for the transverse field case. These results are qualitatively understood with the spectral representation. Thus, by measuring the ac responses both parallel and perpendicular to the uniaxial anisotropic axis of the field-induced structures, it is possible to perform a real-time monitoring of the field-induced aggregation process.Comment: 14 pages and 4 eps figure

    General metabolism of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes and pathways of the general metabolism of <it>L. hongkongensis </it>and correlated them with its phenotypic characteristics.</p> <p>Results</p> <p>The <it>L. hongkongensis </it>genome possesses the pentose phosphate and gluconeogenesis pathways and tricarboxylic acid and glyoxylate cycles, but incomplete Embden-Meyerhof-Parnas and Entner-Doudoroff pathways, in agreement with its asaccharolytic phenotype. It contains enzymes for biosynthesis and β-oxidation of saturated fatty acids, biosynthesis of all 20 universal amino acids and selenocysteine, the latter not observed in <it>Neisseria gonorrhoeae</it>, <it>Neisseria meningitidis </it>and <it>Chromobacterium violaceum</it>. The genome contains a variety of dehydrogenases, enabling it to utilize different substrates as electron donors. It encodes three terminal cytochrome oxidases for respiration using oxygen as the electron acceptor under aerobic and microaerophilic conditions and four reductases for respiration with alternative electron acceptors under anaerobic conditions. The presence of complete tetrathionate reductase operon may confer survival advantage in mammalian host in association with diarrhea. The genome contains CDSs for incorporating sulfur and nitrogen by sulfate assimilation, ammonia assimilation and nitrate reduction. The existence of both glutamate dehydrogenase and glutamine synthetase/glutamate synthase pathways suggests an importance of ammonia metabolism in the living environments that it may encounter.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possesses a variety of genes and pathways for carbohydrate, amino acid and lipid metabolism, respiratory chain and sulfur and nitrogen metabolism. These allow the bacterium to utilize various substrates for energy production and survive in different environmental niches.</p

    The quantum mechanical geometric phase of a particle in a resonant vibrating cavity

    Get PDF
    We study the general-setting quantum geometric phase acquired by a particle in a vibrating cavity. Solving the two-level theory with the rotating-wave approximation and the SU(2) method, we obtain analytic formulae that give excellent descriptions of the geometric phase, energy, and wavefunction of the resonating system. In particular, we observe a sudden π\pi-jump in the geometric phase when the system is in resonance. We found similar behaviors in the geometric phase of a spin-1/2 particle in a rotating magnetic field, for which we developed a geometrical model to help visualize its evolution.Comment: 15pages,6figure
    corecore