479 research outputs found

    Interferon-gamma inducible protein 10 (IP10) induced cisplatin resistance of HCC after liver transplantation through ER stress signaling pathway.

    Get PDF
    Tumor recurrence remains an obstacle after liver surgery, especially in living donor liver transplantation (LDLT) for patients with hepatocellular carcinoma (HCC). The acute-phase liver graft injury might potentially induce poor response to chemotherapy in recurrent HCC after liver transplantation. We here intended to explore the mechanism and to identify a therapeutic target to overcome such chemoresistance. The associations among graft injury, overexpression of IP10 and multidrug resistant genes were investigated in a rat liver transplantation model, and further validated in clinical cohort. The role of IP10 on HCC cell proliferation and tumor growth under chemotherapy was studied both in vitro and in vivo. The underlying mechanism was revealed by detecting the activation of endoplasmic reticulum (ER) stress signaling pathways. Moreover, the effect of IP10 neutralizing antibody sensitizing cisplatin treatment was further explored. In rat liver transplantation model, significant up-regulation of IP10 associated with multidrug resistant genes was found in small-for-size liver graft. Clinically, high expression of circulating IP10 was significant correlated with tumor recurrence in HCC patients underwent LDLT. Overexpression of IP10 promoted HCC cell proliferation and tumor growth under cisplatin treatment by activation of ATF6/Grp78 signaling. IP10 neutralizing antibody sensitized cisplatin treatment in nude mice. The overexpression of IP10, which induced by liver graft injury, may lead to cisplatin resistance via ATF6/Grp78 ER stress signaling pathway. IP10 neutralizing antibody could be a potential adjuvant therapy to sensitize cisplatin treatment

    Mechanics of an adhesive tape in a zero degree peel test: effect of large deformation and material nonlinearity

    Get PDF
    International audienceThe common pressure sensitive adhesive (PSA) tape is a composite consisting of a stiff backing layer and a soft adhesive layer. A simple and common way to test how adhesive tapes respond to large shear deformations is the zero degree peel test. Because the backing is very stiff compared to the adhesive layer, the region where the adhesive layer is subjected to large shear can be hundreds of times its thickness. We use a large deformation hyperelastic model to study the stress and deformation fields in the adhesive layer in this test. We present a closed-form solution for the stress field in the adhesive layer and use this solution to determine how load is transferred from the backing layer to the adhesive. Our analytical model is then compared with finite element results, and except for a small region near the peel front, the predicted stress and deformation agree well with the finite element model. Interestingly, we find very different results from the classical linear theory established by Kaelble. In particular for large deformations, our analysis shows that the lateral stresses (parallel to the rigid substrate) are much larger than the shear stress in the adhesive layer. The discrepancy in the stress state and the deformation state with the linear theory is particularly large near the peel front, which we study with a finite element model. These new results will be very useful to interpret experiments and in particular to identify the high stress regions where failure is likely to initiate in zero-degree peel tests also called shear resistance tests in the PSA industry

    Indentation of a Rigid Sphere into an Elastic Substrate with Surface Tension and Adhesion

    Full text link
    The surface tension of compliant materials such as gels provides resistance to deformation in addition to and sometimes surpassing that due to elasticity. This article studies how surface tension changes the contact mechanics of a small hard sphere indenting a soft elastic substrate. Previous studies have examined the special case where the external load is zero, so contact is driven by adhesion alone. Here, we tackle the much more complicated problem where, in addition to adhesion, deformation is driven by an indentation force. We present an exact solution based on small strain theory. The relation between indentation force (displacement) and contact radius is found to depend on a single dimensionless parameter: ω=σ(μR)2/3(9πWad/4)1/3\omega=\sigma(\mu R)^{-2/3}(9\pi W_{\textrm{ad}}/4)^{-1/3}, where σ\sigma and μ\mu are the surface tension and shear modulus of the substrate, RR is the sphere radius, and WadW_{\textrm{ad}} is the interfacial work of adhesion. Our theory reduces to the Johnson-Kendall-Roberts theory and Young-Dupr\'e equation in the limits of small and large ω\omega respectively, and compares well with existing experimental data. Our results show that, although surface tension can significantly affect the indentation force, the magnitude of the pull-off load in the partial wetting liquid-like limit is reduced only by 1/3 compared with the JKR limit, and the pull-off behavior is completely determined by ω\omega

    Extreme cavity expansion in soft solids: damage without fracture

    Full text link
    Cavitation is a common damage mechanism in soft solids. Here, we study this using a phase-separation technique in stretched, elastic solids to controllably nucleate and grow small cavities by several orders of magnitude. The ability to make stable cavities of different sizes, as well as the huge range of accessible strains, allows us to systematically study the early stages of cavity expansion. Cavities grow in a scale-free manner, accompanied by irreversible bond breakage that is distributed around the growing cavity, rather than being localized to a crack tip. Furthermore, cavities appear to grow at constant driving pressure. This has strong analogies with the plasticity that occurs surrounding a growing void in ductile metals. In particular we find that, although elastomers are normally considered as brittle materials, small-scale cavity expansion is more like a ductile process. Our results have broad implications for understanding and controlling failure in soft solids

    Regulation of shear-induced nuclear translocation of the Nrf2 transcription factor in endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular endothelial cells (ECs) constantly experience fluid shear stresses generated by blood flow. Laminar flow is known to produce atheroprotective effects on ECs. Nrf2 is a transcription factor that is essential for the antioxidant response element (ARE)-mediated induction of genes such as heme-oxygenase 1 (HO-1). We previously showed that fluid shear stress increases intracellular reactive oxygen species (ROS) in ECs. Moreover, oxidants are known to stimulate Nrf2. We thus examined the regulation of Nrf2 in cultured human ECs by shear stress.</p> <p>Results</p> <p>Exposure of human umbilical vein endothelial cells (HUVECs) to laminar shear stress (12 dyne/cm<sup>2</sup>) induced Nrf2 nuclear translocation, which was inhibited by a phosphatidylinositol 3-kinase (PI3K) inhibitor, a protein kinase C (PKC) inhibitor, and an antioxidant agent N-acetyl cysteine (NAC), but not by other protein kinase inhibitors. Therefore, PI3K, PKC, and ROS are involved in the signaling pathway that leads to the shear-induced nuclear translocation of Nrf2. We also found that shear stress increased the ARE-binding activity of Nrf2 and the downstream expression of HO-1.</p> <p>Conclusion</p> <p>Our data suggest that the atheroprotective effect of laminar flow is partially attributed to Nrf2 activation which results in ARE-mediated gene transcriptions, such as HO-1 expression, that are beneficial to the cardiovascular system.</p

    Microsatellite instability, Epstein–Barr virus, mutation of type II transforming growth factor β receptor and BAX in gastric carcinomas in Hong Kong Chinese

    Get PDF
    Microsatellite instability (MI), the phenotypic manifestation of mismatch repair failure, is found in a proportion of gastric carcinomas. Little is known of the links between MI and Epstein–Barr virus (EBV) status and clinicopathological elements. Examination of genes mutated through the MI mechanism could also be expected to reveal important information on the carcinogenic pathway. Seventy-nine gastric carcinomas (61 EBV negative, 18 EBV positive) from local Hong Kong Chinese population, an intermediate-incidence area, were examined. Eight microsatellite loci, inclusive of the A10 tract of type II transforming growth factor β receptor (TβR-II), were used to evaluate the MI status. MI in the BAX and insulin-like growth factor II receptor (IGF-IIR) genes were also examined. High-level MI (>40% unstable loci) was detected in ten cases (12.7%) and low-level MI (1–40% unstable loci) in three (3.8%). High-level MI was detected in two EBV-associated cases (11%) and the incidence was similar for the EBV-negative cases (13%). The high-level MIs were significantly associated with intestinal-type tumours (P = 0.03) and a more prominent lymphoid infiltrate (P = 0.04). Similar associations were noted in the EBV-positive carcinomas. The high-level MIs were more commonly located in the antrum, whereas the EBV-associated carcinomas were mostly located in body. Thirteen cardia cases were negative for both high-level MI and EBV. All patients aged below 55 were MI negative (P = 0.049). Of the high-level MIs, 80% had mutation in TβR-II, 40% in BAX and 0% in IGF-IIR. Of low-level MIs, 33% also had TβR-II mutation. These mutations were absent in the MI-negative cases. Of three lymphoepithelioma-like carcinomas, two cases were EBV positive and MI negative, one case was EBV negative but with high-level MI. In conclusion, high-level MIs were present regardless of the EBV status, and were found in a particular clinicopathological subset of gastric carcinoma patient. Inactivation of important growth regulatory genes observed in these carcinomas confirms the importance of MI in carcinogenesis. © 1999 Cancer Research Campaig

    Liver transplantation for acute-on-chronic liver failure

    Get PDF
    Purpose: To evaluate the outcome of liver transplantation for acute-on-chronic liver failure. Patients and methods: From November 1991 to December 2007, 517 patients underwent liver transplantation at Queen Mary Hospital, Hong Kong. Among them, 149 had acute-on-chronic liver failure as defined in the recent Asian Pacific Association for the Study of Liver Consensus Meeting. Their clinical data were reviewed and their survival outcomes were compared with those of patients who underwent liver transplantation for fulminant hepatic failure and for cirrhosis only in the same period. Results: The patients with acute-on-chronic liver failure included 50 patients having acute exacerbation of chronic hepatitis B and 99 cirrhotic patients with acute deterioration. Their median model for end-stage liver disease scores were 35 and 37, respectively. Preoperative infection (35%), hepatorenal syndrome (38%), and respiratory failure (28.8%) were common. One hundred and three patients received living donor liver grafts and 46 patients received deceased donor liver grafts. The hospital mortality rate was 4.7%. The 5-year survival rates were 93.2% for patients with acute exacerbation of chronic hepatitis B and 90.5% for cirrhotic patients with acute deterioration. The results were similar to those of the patients with fulminant hepatic failure (n = 37) and the patients having cirrhosis only (n = 301). Conclusions: Liver transplantation for acute-on-chronic liver failure is life-saving, and the survival rates it attains are similar to those attained by transplantation for other liver conditions.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Towards a global partnership model in interprofessional education for cross-sector problem-solving

    Get PDF
    Objectives A partnership model in interprofessional education (IPE) is important in promoting a sense of global citizenship while preparing students for cross-sector problem-solving. However, the literature remains scant in providing useful guidance for the development of an IPE programme co-implemented by external partners. In this pioneering study, we describe the processes of forging global partnerships in co-implementing IPE and evaluate the programme in light of the preliminary data available. Methods This study is generally quantitative. We collected data from a total of 747 health and social care students from four higher education institutions. We utilized a descriptive narrative format and a quantitative design to present our experiences of running IPE with external partners and performed independent t-tests and analysis of variance to examine pretest and posttest mean differences in students’ data. Results We identified factors in establishing a cross-institutional IPE programme. These factors include complementarity of expertise, mutual benefits, internet connectivity, interactivity of design, and time difference. We found significant pretest–posttest differences in students’ readiness for interprofessional learning (teamwork and collaboration, positive professional identity, roles, and responsibilities). We also found a significant decrease in students’ social interaction anxiety after the IPE simulation. Conclusions The narrative of our experiences described in this manuscript could be considered by higher education institutions seeking to forge meaningful external partnerships in their effort to establish interprofessional global health education
    corecore