320 research outputs found

    Improving the Apparel Virtual Size Fitting Prediction under Psychographic Characteristics and 3D Body Measurements Using Artificial Neural Network

    Get PDF
    3D virtual simulation prototyping software combined with computer-aided manufacturing systems are widely used and are becoming essential in the fashion industry in the earlier stages of the product development process for apparel design. These technologies streamline the garment product fitting procedures, as well as improve the supply chain environmentally, socially, and economically by eliminating large volumes of redundant samples. Issues of non-standardized selection on garment sizing, ease allowance, and size of 3D avatar for creating 3D garments have been addressed by many researchers. Understanding the relationship between body dimensions, ease allowance, and apparel sizes before adopting virtual garment simulation is fundamental for satisfying high customer demands in the apparel industry. However, designers find difficulties providing the appropriate garment fit for customers without fully understanding the motivation and emotions of customers’ fitting preferences in a virtual world. The main purpose of this study is to investigate apparel sizes for virtual fitting, particularly looking at garment ease with consideration of body dimensions and the psychographic characteristics of subjects. In order to develop a virtual garment fitting prediction model, an artificial neural network (ANN) was applied. We recruited 50 subjects between the ages of 18 and 35 years old to conduct 3D body scans and a questionnaire survey for physical and psychological segmentation, as well as fitting preferences evaluation through co-design operations on virtual garment simulation using a commercial software called Optitex. The results from the study demonstrate that ANN is effective in modeling the non-linear relationship between pattern measurements, psychological characteristics, and body measurements. This new approach and the proposed method of virtual garment fitting model prediction on garment sizes using an Artificial Neural Network (ANN) is significant in prediction accuracy. The project also achieves the concept of mass customization and customer orientation and generates new size-fitting data that can bring a new level of end-user satisfaction

    The prevalence and risk factors of occult stress urinary incontinence in women undergoing genitourinary prolapse surgery

    Get PDF
    De novo stress urinary incontinence (SUI) may occur in up to 80% of clinically continent women following genitourinary prolapse surgery. This had resulted in an increase in the rate of concurrent continence surgery during prolapse repair from 38% in 2001 to 47% in 2009 in the United States. To date, there is no local data available to estimate the prevalence of occult SUI (OSUI) among Malaysian women awaiting surgery. Therefore, this study was conducted to elicit the prevalence of occult SUI and its associated risks factors in patients awaiting prolapse surgery. We retrospectively studied the records of 296 consecutive women with significant pelvic organ prolapse awaiting reconstructive repair. All patients attended the Urogynaecology Unit in Hospital Kuala Lumpur Malaysia between October 2007 and September 2011. They had undergone standardized interviews, clinical examinations and urodynamic studies. During the urodynamic testings, all prolapses were reduced using ring pessaries to elicit OSUI. Primary outcome was the prevalence of OSUI with prolapse reduction to predict possibility of developing de novo SUI following prolapse surgery. Secondary outcome was the assessment of potential risk factors for OSUI. Among the 296 women studied, 121 (40.9%) were found to have OSUI. The risk factors associated with OSUI included age, BMI, numbers of SVD, recurrent UTI, reduction of urinary flow symptoms and grade 2 to 4 central compartment prolapses. We concluded that preoperative urodynamic testing with reduction of prolapse is useful to identify women with OSUI. This is important for preoperative counselling as well as planning for one step approach of prophylactic concomitant anti-incontinence procedures during prolapse surgery in order to avoid postoperative de novo SUI

    Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres.

    Get PDF
    Dominant mutations in TPM3, encoding α-tropomyosin(slow), cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosin(slow) was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosin(slow) likely impacts actin–tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosin(slow) (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition

    Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control

    Get PDF
    DNA replication stress is a source of genomic instability. Here we identify ​changed mutation rate 1 (​Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that ​Cmr1—together with ​Mrc1/​Claspin, ​Pph3, the chaperonin containing ​TCP1 (CCT) and 25 other proteins—define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression, chromatin and mitotic spindle organization may also be regulated through INQ. Similar to ​Cmr1, its human orthologue ​WDR76 responds to proteasome inhibition and DNA damage by relocalizing to nuclear foci and physically associating with CCT, suggesting an evolutionarily conserved biological function. We propose that ​Cmr1/​WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins

    The Use of Antisense Oligonucleotides in Evaluating Survivin as a Therapeutic Target for Radiation Sensitization in Lung Cancer

    Get PDF
    Elucidating the mechanism of over and under expression of proteins is critical in developing a better understanding of cancer. Multiple techniques are used to examine differential expression of proteins in cells and assess changes in protein expression in response to therapies such as radiation. Reduced expression can be caused by protein inactivation, mRNA instability, or reduced transcription. The following protocol was used to determine the mechanism for the reduced expression of an antiapoptotic factor, survivin, in normal tissues in response to radiation and the defect in cancer cells that prevents this reduction. We also examined ways to overcome survivin over expression in cancer cells in order to sensitize them to radiation. We will focus on the use of antisense oligonucleotides, cell cycle analysis, and luciferase reporter genes

    The clinical features of the piriformis syndrome: a systematic review

    Get PDF
    Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis

    Selective Deposition and Alignment of Single-Walled Carbon Nanotubes Assisted by Dielectrophoresis: From Thin Films to Individual Nanotubes

    Get PDF
    Dielectrophoresis has been used in the controlled deposition of single-walled carbon nanotubes (SWNTs) with the focus on the alignment of nanotube thin films and their applications in the last decade. In this paper, we extend the research from the selective deposition of SWNT thin films to the alignment of small nanotube bundles and individual nanotubes. Electrodes with “teeth”-like patterns are fabricated to study the influence of the electrode width on the deposition and alignment of SWNTs. The entire fabrication process is compatible with optical lithography-based techniques. Therefore, the fabrication cost is low, and the resulting devices are inexpensive. A series of SWNT solutions is prepared with concentrations ranging from 0.0125 to 0.2 mg/ml. The alignment of SWNT thin films, small bundles, and individual nanotubes is achieved under the optimized experimental conditions. The electrical properties of these samples are characterized; the linear current–voltage plots prove that the aligned SWNTs are mainly metallic nanotubes. The microscopy inspection of the samples demonstrates that the alignment of small nanotube bundles and individual nanotubes can only be achieved using narrow electrodes and low-concentration solutions. Our investigation shows that it is possible to deposit a controlled amount of SWNTs in desirable locations using dielectrophoresis

    The Complete Spectrum of Yeast Chromosome Instability Genes Identifies Candidate CIN Cancer Genes and Functional Roles for ASTRA Complex Components

    Get PDF
    Chromosome instability (CIN) is observed in most solid tumors and is linked to somatic mutations in genome integrity maintenance genes. The spectrum of mutations that cause CIN is only partly known and it is not possible to predict a priori all pathways whose disruption might lead to CIN. To address this issue, we generated a catalogue of CIN genes and pathways by screening ∼2,000 reduction-of-function alleles for 90% of essential genes in Saccharomyces cerevisiae. Integrating this with published CIN phenotypes for other yeast genes generated a systematic CIN gene dataset comprised of 692 genes. Enriched gene ontology terms defined cellular CIN pathways that, together with sequence orthologs, created a list of human CIN candidate genes, which we cross-referenced to published somatic mutation databases revealing hundreds of mutated CIN candidate genes. Characterization of some poorly characterized CIN genes revealed short telomeres in mutants of the ASTRA/TTT components TTI1 and ASA1. High-throughput phenotypic profiling links ASA1 to TTT (Tel2-Tti1-Tti2) complex function and to TORC1 signaling via Tor1p stability, consistent with the role of TTT in PI3-kinase related kinase biogenesis. The comprehensive CIN gene list presented here in principle comprises all conserved eukaryotic genome integrity pathways. Deriving human CIN candidate genes from the list allows direct cross-referencing with tumor mutational data and thus candidate mutations potentially driving CIN in tumors. Overall, the CIN gene spectrum reveals new chromosome biology and will help us to understand CIN phenotypes in human disease
    corecore