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Abstract 

Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy 

characterised by generalised muscle weakness. Here, we used a multidisciplinary approach to 

investigate the mechanism of muscle dysfunction in twelve TPM3-myopathy patients. 

We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and 

is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre 

predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and 

normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate 

that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a 

dominant-negative effect of mutant protein on muscle contraction. Molecular modelling 

suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, 

indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow 

(R168C) to filamentous actin. 

Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific 

abnormalities. At saturating [Ca2+] (pCa 4.5), patient slow fibres produced only 63% of the 

contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge 

cycling kinetics. Importantly, due to reduced Ca2+-sensitivity, at sub-saturating [Ca2+] (pCa 6, 

levels typically released during in vivo contraction) patient slow fibres produced only 26% of 

the force generated by control slow fibres.  

Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre 

force at physiological [Ca2+], and impaired acto-myosin cross-bridge cycling kinetics. Fast 

myofibres are spared; however, they appear to be unable to compensate for slow fibre 

dysfunction. Abnormal Ca2+-sensitivity in TPM3-myopathy patients suggests Ca2+-sensitising 

drugs may represent a useful treatment for this condition. 
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Introduction 

Dominant mutations in the TPM3 gene, encoding α-tropomyosinslow (α-TPMslow), cause a 

congenital myopathy characterised by mild to moderate early onset, non-progressive 

generalised muscle weakness (1-3). Axial and respiratory muscles are commonly involved 

and many patients require night-time ventilatory support (1, 2). Recessive mutations, causing 

loss of protein, are rare with only four instances reported to date in patients with relatively 

severe clinical presentations (4-7). In contrast, more than 40 families with dominant TPM3 

missense mutations have been identified involving 19 different residues (1, 3, 7-13), 

Supplementary Tab. 1). Histologically, many TPM3 patients present with slow skeletal 

myofibre hypotrophy in the absence of additional pathological features, resulting in a clinical 

diagnosis of congenital fibre-type disproportion (CFTD) (3). Some patients also exhibit 

nemaline bodies or cores in myofibres and are classified as nemaline myopathy (8) or core 

myopathy (1, 11, 14), respectively. The same mutation in TPM3 can cause a variety of 

histological phenotypes (Supplementary Tab. 1) (1, 3, 7, 14).  

Three tropomyosin isoforms are present in the skeletal muscle sarcomere (15). TPM1 and 

TPM3 encode the two α-tropomyosins expressed exclusively in fast fibres (TPM1; α-TPMfast, 

Tpm1.st) or slow fibres (TPM3; α-TPMslow, Tpm3.12st), respectively. TPM2 encodes β-

tropomyosin (β-TPM, Tpm2.2st) and is expressed in both fibre types (16, 17). Tropomyosin 

forms alpha-helical coiled-coil heterodimers between one α- and one β-chain. These dimers 

polymerise head-to-tail into a continuous filament that associates along the entire length of 

the actin thin filament and interacts with the troponin complex to regulate Ca2+-mediated 

actin-myosin cross-bridge cycling during muscle contraction. The structure of tropomyosin is 

conferred by a seven residue repeat motive [a-b-c-d-e-f-g] (Fig. 1A and B) (18). Residues at 

positions a and d in the repeat are typically hydrophobic, creating a hydrophobic pocket 

between two tropomyosin chains facilitating dimerisation (blue). Charged residues at 

positions g and e (green) stabilise the dimer through inter-helical salt bridges. Positions b, c 

and f (yellow) localise to the surface of tropomyosin dimers and likely modulate interactions 

with proteins such as actin and troponin.  

 

Many dominant TPM3 mutations (11/19) affect positions b, c or f on the outer surface of the 

dimer (Fig. 1C, yellow). Only five mutations affect positions a and d in the hydrophobic 

pocket (Fig. 1C, blue) and three mutations affect positions g and e constituting the inter-

Page 4 of 88Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Page 4 of 30 

 

helical salt bridges (Fig. 1C, green). All mutations fall within, or very close to, one of the 

seven actin binding regions of tropomyosin (Fig. 1C, purple shaded area of the molecule) 

(19). In particular, there is a striking concentration of mutations within the fifth actin-binding 

region of α-TPMslow (R168H, R168G, R168C, K169E, E174A) some of which are recurrent 

in several unrelated families (e.g. R168 residue is mutated in 20 different families). 

Although the structure and function of tropomyosin is well established, the mechanism(s) by 

which mutations in TPM3 cause muscle weakness remains poorly understood. Two recent 

studies showed that four patients with dominant TPM3 mutations had abnormal cross-bridge 

cycling kinetics and Ca2+-sensitivity of contraction in single skeletal myofibres isolated from 

patient biopsies [n=3 (20), n=1 (21)]. However, these studies were limited by small sample 

sizes, and separate assessment of the properties of slow versus fast myofibres was only 

possible to a limited extend. In this study, we aimed to unravel the mechanism of muscle 

weakness in a cohort of 12 patients with dominant TPM3 mutations. We performed thorough 

histological characterisation, assessed thin filament protein expression and quantified the 

contractile properties of single myofibres isolated from patient muscle specimens (10/12 

patients, Tab. 1). 

Page 5 of 88 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Page 5 of 30 

 

Results 

TPM3-myopathy patients have slow fibre hypotrophy and deregulation of slow and 

fast muscle fibre proportions 

The main histological characteristic in all patients with TPM3 mutations is selective 

hypotrophy of slow-twitch type-1 fibres, compared to fast-twitch type-2 fibres (1, 3, 7) (Fig. 

2A, ATPase pH 4.6, slow myofibres appear dark; see Supplementary Tab. 2 for 

measurements). On average, fast fibres were between 1.7 and 5.2 times larger in diameter 

than slow fibres (Fig. 2B), corresponding to a %FSD of 41 % - 78.3 % (Fig. 2C). The 

selective hypotrophy of slow fibres in TPM3 patients is consistent with the slow-fibre 

specific expression of α-TPMslow. 

Additionally, fibre-typing was skewed in patient biopsies, either towards fast fibre 

predominance (five patients, less than 30 % slow fibre area) or slow fibre predominance (six 

patients, more than 60 % slow fibre area), compared to age-matched control biopsies where 

the CSA occupied by either fibre-type is approximately 50:50 [this study and (22, 23)] (Fig. 

2D). Only one patient biopsy showed normal slow-fast fibre distribution (between 40-60 % 

slow fibre area). 

 

Tropomyosin isoform ratios are not commonly altered in TPM3-myopathy patients  

In normal muscle, the ratio of α/β tropomyosin molecules is approximately 50:50 β-TPM/α-

TPMfast in fast fibres and 50:50 β-TPM/α-TPMslow in slow fibres (24). A patient and 

transgenic mouse model carrying the TPM3 M9R mutation, the first mutation associated with 

nemaline myopathy, showed an imbalance of this ratio, with a dramatic excess of α-TPMslow 

relative to β-TPM in skeletal muscle (25) (Fig. 3Ai, Lane 5). This disruption in tropomyosin 

stoichiometry was proposed as a potential mechanism of muscle weakness (25). In contrast, 

in this cohort of 12 TPM3-myopathy patients, we observed normal ratios of α/β tropomyosin, 

similar to controls (Fig. 3Ai). The scatter plots in Fig. 3Aii-iiii show the relative levels of 

each tropomyosin isoform relative to the type-1 fibre CSA, as determined by ATPase 

staining. β-TPM is present at equal amounts in slow and fast myofibres in all samples (~50 % 

of total tropomyosin, Fig. 3Aii). The relative expression of α-TPMslow and α-TPMfast 

correlates well with type-1 fibre CSA (positive correlation for α-TPMslow and negative 

correlation for α-TPMfast, Fig. 3Aiii and 3Aiiii). The linear regression slope fitted to the data 

was not significantly different between patients and controls, demonstrating a normal ratio of 

α/β tropomyosin isoforms in fast and slow fibres. 
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Mutant α-TPMslow is expressed in muscle of TPM3-myopathy patients 

The autosomal dominant inheritance of TPM3 mutations within our cohort is consistent with 

the hypothesis that mutant α-TPMslow is expressed in slow skeletal myofibres and causes 

disease via a dominant-negative effect on thin filament function. To confirm mutant α-

TPMslow is present in patient muscle, we isolated the filamentous fractions (representing 

proteins incorporated in high-molecular weight structures such as sarcomeres) and performed 

2D-SDS-PAGE. Five patients in our cohort from whom skeletal muscle samples were 

available, had a mutation that resulted in an amino-acid substitutions affecting a charged 

residue leading to a predicted alteration in the isoelectric point (pI) of α-TPMslow. Thus, 

isoelectric focusing allowed us to separate the mutant from the wild-type protein on the basis 

of charge in these patients, and the second dimension urea-SDS gel separated the three 

tropomyosin isoforms from each other. The mutant α-TPMslow protein could then be observed 

as a left-sided (Fig. 3B; R186G, R91P, K169E, R168C) or right-sided shift (Fig. 3B, E241K) 

from the wild-type α-TPMslow and was present in all patient muscles. The total pool of α-

TPMslow (both wild-type and mutant isoforms) correlated with the slow fibre CSA (% type-1 

fibre area annotated above each blot, see Supplementary Tab. 2 for measurements). However, 

mutant α-TPMslow was less abundant compared to wild-type, ranging from 27 to 45 % of total 

α-TPMslow (% mutant α-TPMslow annotated on each blot).  

 

The actin-binding properties of K169E and R168C mutant α-TPMslow proteins are 

altered 

The position of many TPM3 mutations within or close to actin binding sites suggest most 

mutations may influence interactions between α-TPMslow and actin filaments. Therefore, we 

performed actin-tropomyosin co-sedimentation assays with two recombinant mutant α-

TPMslow proteins (R168C and K169E) and compared their actin binding properties to wild-

type α-TPMslow. These mutations were chosen because they are both located in the fifth actin 

binding domain, the area that harbours a hotspot for myopathy causing mutations, and affect 

amino acids predicted to be involved in actin interactions. We co-sedimented incremental 

amounts of each of the three α-TPMslow proteins with 100 nM filamentous skeletal actin. Fig. 

4A shows a representative SDS-PAGE of the filamentous fraction isolated following 

ultracentrifugation, demonstrating dose-dependent binding of wild-type α-TPMslow to actin 

filaments. Densitometry data of the bound fraction versus the total amount of α-TPMslow 

added to the reaction was fitted to a Hill equation, to determine the binding constant Kd and 
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the Hill coefficient (h) for all three α-TPMslow proteins (Fig. 4B). The α-TPMslow R168C 

protein showed reduced actin binding affinity compared to wild-type or the α-TPMslow K169E 

protein (Kd = 771.4±188.6 nM for R168C, 180.2±37.6 nM for wild-type and 164.0±110.6 nM 

for K169E, range represents 95% confidence interval). The Hill coefficient was similar in all 

three mutations (h = wild-type 4.471±3.0, R168C 3.308±2.4, K169E 1.602±1.3). These 

results suggest actin binding may be the mechanism by which the TPM3 R168C mutation 

alters contractile function and causes muscle weakness. 

 

Fast fibre specific α-actinin-3 is ectopically expressed in slow fibres of patients with 

R168H/G TPM3 mutations 

As many TPM3 patient biopsies displayed a skewing to either slow- or fast- fibre 

predominance by ATPase stain, we stained serial muscle sections with antibodies recognizing 

fibre-type specific isoforms of MHC, troponin and α-actinin to investigate whether the 

expression of several fibre-type-specific proteins was normal (Fig. 5A, Supplementary Fig. 

1). Three patients (Patients 4, 6a and 6b, each with R168 substitutions), showed elevated 

levels of hybrid fibres expressing both slow and fast myosin isoforms. All other patients 

showed normal fibre profiling of myosin and troponin. Curiously, when further 

characterizing the expression profile of hybrid fibres in Patients 4, 6a, 6b and 10, we 

observed ectopic expression of α-actinin-3 in dedicated slow fibres as determined by the 

expression of myosin and troponin (Fig. 5A, Supplementary Fig. 1). α-Actinin-3 is a 

component of the Z-disc normally present in fast myofibres and has been found to be 

important for muscle performance (strength and speed) (26, 27). Our results suggest that the 

restricted fibre-type expression profiles of α-actinin-2 and -3 is differently regulated to 

myosin, troponin and tropomyosin in patients with TPM3 mutations compared to age-

matched controls. 

 

Phosphorylation of tropomyosin is increased in patients with mutations in TPM3 

In normal skeletal muscle, a proportion of both α- and β-TPM is phosphorylated at residue 

S283 (28, 29)(Fig. 5Bi). The effect of tropomyosin phosphorylation in skeletal muscle is 

poorly understood, but studies suggest it is important for tropomyosin function by enhancing 

head-to-tail interactions and increasing the cooperative activation of myosin resulting in 

enhanced force production (30). We investigated whether phosphorylation at S283 was 

altered in TPM3 patients (as a possible contributor to muscle dysfunction) by Western blot 
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analysis using an anti-phosphor-S283 specific antibody (Fig. 5Bii shows a representative 

Western blot). Phosphorylation of tropomyosin (all three isoforms were analysed in 

combination) was increased in 6/8 of patients with samples available for analysis, compared 

to five age-matched controls (Fig. 5Biii). However, elevated levels of S283 phosphorylation 

were also observed in patients with mutations in TPM2, ACTA1, DNM2, DMD and DYSF 

(Fig. 5Biiii).  

 

Mutations in DMD (causing Duchenne and Becker muscular dystrophy) and DYSF (causing 

limb girdle muscular dystrophy type-2B) cause muscle fibre breakdown and regeneration. It 

is well documented that tropomyosin phosphorylation is higher during development in 

animals (29), and thus we explored whether increased phosphor-S283 in dystrophic muscle 

was related to fibre re-generation. Using IHC analysis, we established that phospho-S283 

tropomyosin levels did not correlate with fibre-type or with fibre re-generation in control or 

patient biopsies (Supplementary Fig. 2B-C). In TPM3 patients however, levels of phospho-

S283 tropomyosin were specifically elevated in small, slow-twitch myofibres (Supplementary 

Fig. 2A). This suggests that increased phosphorylation of tropomyosin is not specific to 

TPM3 disease, but may be a compensatory response to muscle dysfunction due to a variety of 

mechanisms. 

 

Slow myofibres of TPM3-myopathy patients have reduced maximal force, likely due 

to altered cross-bridge cycling 

In order to understand how muscle weakness develops in TPM3 patients we performed 

contractile studies on single, chemically-permeabilised patient myofibres or small fibre 

bundles by immersing them in Ca2+-containing solutions (see methods regarding details for 

analysis of bundles). This induces activation of the contractile filaments allowing 

measurement of isometric force production. 

 

First, fibres and fibre bundles were activated at saturating [Ca2+] of pCa 4.5 (~31.6 µM) to 

induce maximal isometric contraction (Fmax, Fig. 6A). A small but significant force deficit 

was observed in slow myofibres and fibre bundles from seven of 10 TPM3-myopathy patients 

compared to pooled control samples (Fmax in all TPM3 patients ranges from 52.17 – 116 

mN/mm2 compared to 143.1±31.8 mN/mm2 in controls, *p<0.01 one-way ANOVA, Fig. 6C 

and D). This force deficit was present despite normalization to the smaller CSA in slow fibres 
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of TPM3 patients. Fmax in type-2 fibres was not different from control fibres (106.7-186.7 

mN/mm2 in patient fibres and 147.7±29.34 mN/mm2 in control fibres) (Fig. 6B). In bundles, 

Fmax was lower in bundles with higher slow MHC content in two of three patients 

(Supplementary Fig. 3).  

 

During muscle contraction, a cyclic interaction between the myosin heads and thin filaments, 

followed by a conformational change in myosin, allows the filaments to slide past each other. 

Correct positioning of tropomyosin on actin filaments during the various stages of myosin-

actin interactions is crucial for efficient cross-bridge cycling. To determine if the force deficit 

in slow myofibres of TPM3 patients can be attributed to changes in cross-bridge cycling 

kinetics we measured the rate of tension re-development (Ktr) during maximal activation, 

after a short period of unloaded shortening following by re-stretch (a typical length and force 

trace are presented in Fig. 7Ai). The speed of cross-bridge cycling is physiologically faster in 

type-2 (fast-twitch) fibres compared to type-1 (slow-twitch) fibres (see controls in Fig. 7Aii-

iii). Slow fibres from eight of 10 TPM3 patient biopsies displayed a significant reduction in 

Ktr compared to controls (Ktr in all TPM3 patients ranges from 0.758-1.217 s-1 compared to 

1.493±0.25 s-1 in controls, *** p<0.0001, * p<0.01, one-way ANOVA, Fig. 7Aii), whereas 

fast myofibres were not different from control myofibres (Fig. 7Aiii). These results suggest 

that myosin cross-bridge cycling kinetics are altered in slow fibres of TPM3 patients, 

contributing to muscle weakness by reducing the fraction of strongly bound cross-bridges 

during activation. 

 

Fmax is proportional to the force generated by a single strongly bound actin-myosin cross-

bridge and the fraction of myosin heads attached to actin. We assessed active stiffness in 

TPM3 biopsies, a measure proportional to the number of myosin heads strongly attached to 

actin during an isometric contraction (31), to study whether this contributes to muscle 

weakness. We measured active stiffness by performing fast length changes in isometrically 

contracted single myofibres (typical length/force traces are presented in Supplementary Fig. 4 

and a typical patient and control plot of the length change (∆L) versus force change (∆F) is 

presented in Fig. 7Bi and ii, respectively)(32). We observed a trend towards reduced absolute 

active stiffness in type-1 fibres and bundles/hybrid fibres of most TPM3 patients (Fig. 7Biii 

and iiii), which was not present in type-2 fibres (Fig. 7Bv). The change in active stiffness was 

proportional to Fmax, as the difference was not present when stiffness was normalised to 

Fmax (Fig. 7Bvi-viii). Since stiffness is proportional to the number of strongly attached 
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myosin cross-bridges, a reduction of active stiffness proportional to force reduction suggests 

that forces per cross-bridge were normal, but, in line with the reduced Ktr, the number of 

strongly attached cross-bridges may be reduced in slow fibres of TPM3 patients, likely 

contributing to muscle weakness. 

 

Ca
2+

-sensitivity of contraction and maximal contractile force are decreased in 

patients with TPM3 mutations 

Tropomyosin and the troponin complex are pivotal in regulating Ca2+-induced cross-bridge 

cycling during muscle contraction. We assessed the sensitivity to Ca2+ of permeabilised 

fibres, by bathing preparations in incrementally increasing [Ca2+] (pCa 6.2-4.5) and 

measuring the generated contractile force. In slow myofibres and fibre bundles/hybrid fibres 

of all patients, the force-pCa curves were shifted to the right compared to controls (Fig. 8Ai-

ii). As a result, the pCa50, representing the negative logarithm of the [Ca2+] at which 

preparations produce 50 % of their Fmax, was significantly reduced in type-1 fibres and 

bundles/hybrid fibres from all patients compared to controls (pCa50 type-1: 5.96±0.06 

controls, 5.69±0.04 patients; pCa50 bundles/hybrid:  5.99±0.09 controls, 5.67±0.05 patient, 

Fig. 8Bi-ii). This result indicates that more Ca2+ was required in patient biopsies than control 

biopsies to achieve the same relative force. In contrast, fast fibres from patients and controls 

showed normal Ca2+-activated force production (Fig. 8Aiii, Fig. 8Biii). 

 

Our data demonstrates that slow fibres and in bundles/hybrid fibres from patients with TPM3 

mutations produce on average ~ 63 % of the force produced by control fibres at saturating 

[Ca2+] (pCA 4.5). During a maximal contraction the intracellular [Ca2+] can rise from resting 

levels of ~0.1 µM (pCa 7) to ~10 µM (pCa 5) (33). However, myofibres in vivo rarely 

undergo maximal stimulation and mostly operate at sub-maximal levels, typically resulting in 

[Ca2+] of around 1-5 µM) in type-1 fibres (yellow area in Fig. 8A) (34-36). At these 

physiological Ca2+ levels (pCa 6.0), slow fibres and bundles/hybrid fibres from TPM3 

patients produce on average only 26 % of the force produced by control slow fibres and 

bundles/hybrid fibres (Fig. 8Ci-ii), whereas patient fast fibres produce forces similar to 

controls (Fig. 8Ciii). Thus, our results suggest reduced Ca2+-sensitivity is a significant basis 

for muscle weakness in TPM3-myopathy. 
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Ectopic α-actinin-3 expression in slow myofibres does not correlate with increased 

maximal force 

Four patients with TPM3 mutations at R168 displayed ectopic expression of α-actinin-3 in 

slow myofibres. Since α-actinin-3 expression is associated with increased muscle strength 

and speed (26, 27) we determined whether α-actinin-3 in slow fibres may influence 

contractile properties. We tested if α-actinin-3 expression was more commonly observed in 

fibres with higher Fmax in eight fibres from two patients. However, we found no correlation 

between ectopic α-actinin-3 and force production in these patient fibres (Supplementary Fig. 

5).  
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Discussion 

Mutations in TPM3 cause a range of histopathological patterns and are associated with 

generalised muscle weakness. To date, the cause of muscle dysfunction is not well 

understood in these patients, hindering the development of evidence-based treatments for 

TPM3-myopathies. Thus, we performed extensive phenotypical and functional 

characterization of a large cohort of TPM3-myopathy patients to understand the molecular 

mechanism(s) of their muscle weakness. 

 

The main histological feature of TPM3-myopathy patients in this cohort, and other published 

cohorts (1-3), was a selective hypotrophy of slow myofibres, while other histological features 

such as nemaline rods and caps were rarely present (four of 15 patients). The selective 

hypotrophy and contractile dysfunction of slow myofibres is consistent with the restricted 

slow-fibre expression of α-TPMslow, the main protein expressed from TPM3 in skeletal 

muscle. We confirmed the presence of mutant α-TPMslow in the filamentous fraction of 

patient skeletal muscle via 2D-SDS-PAGE for patients possessing a TPM3 mutation resulting 

in a charge change. In patients with protein aggregates (e.g. nemaline bodies), it has been 

uncertain whether mutant protein is actually incorporated into the sarcomere, or partitions 

into protein aggregates within the muscle fibre. In our study, protein aggregates were not 

observed in biopsies analysed by 2D-SDS-PAGE, suggesting that α-TPMslow mutant protein 

is likely incorporated into sarcomeres causing muscle weakness via a dominant negative 

effect on contractile function. 

Muscle contraction and force production rely on efficient interactions between tropomyosin 

polymers and major binding partners, the troponins and the actin filament, in response to 

Ca2+-influx. In this series of twelve muscle biopsies from TPM3-myopathy patients, we 

showed normal fibre-type expression of the major contractile proteins myosin, actin, troponin 

and tropomyosin. Furthermore, we confirmed normal ratios of the three skeletal muscle 

tropomyosin isoforms according to fibre-type composition for all patients. Our data suggest 

the higher relative abundance of α-TPMslow previously reported in a patient bearing a M9R 

substitution in TPM3 (25, 37) may be a specific property of this mutation, perhaps related to 

its position within the dimerisation domain. In a small number of patients, we observed 

ectopic expression of the fast fibre Z-disc protein α-actinin-3 in slow myofibres. The 

consequence of slow-fibre expression of the fast-fibre α-actinin-3 is not clear, and may relate 
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to both metabolic and structural roles of a-actinin-3, though we excluded an overt effect on 

contractile force of single myofibres. 

We investigated tropomyosin phosphorylation at residue S283 in our cohort. Tropomyosin 

phosphorylation has mainly been studied in the context of cardiac function (38-41) and to the 

best of our knowledge has not been investigated in skeletal myopathy patients. In vitro 

studies suggest phosphorylation strongly affects tropomyosin properties [e.g. stronger head-

to-tail interaction, enhanced troponin binding, higher myosin ATPase activity and long-range 

cooperative activation of myosin-thin filament binding (30, 42, 43)]. We showed 

tropomyosin phosphorylation was commonly increased in a wide range of genetic muscle 

disorders including TPM3-myopathy. However, the cause of this up-regulation and the effect 

on skeletal muscle contractility is unclear. The p38-MAPK (mitogene-activated protein 

kinase) and ERK (extracellular signal-related kinase) signalling pathways are likely involved 

in tropomyosin phosphorylation of cardiac muscle and non-muscle cells, respectively (44-

46). In skeletal muscle, these pathways regulate exercise-induced adaptive responses on gene 

expression (reviewed in 47), suggesting tropomyosin phosphorylation may be involved in 

remodelling or adaptation to cellular stress.  

Most reported TPM3 substitutions lie within or near actin-binding domains, with several 

substitutions believed to influence direct electrostatic interactions with actin in the “off” state 

[when tropomyosin blocks myosin binding sites on the actin filament e.g. R91, R168, R245 

directly interact with actin D25 (48-50)]. Our data and previous studies have shown that 

many tropomyosin substitutions indeed affect binding to actin-filaments (51-54). Thus, 

altered actin-binding likely represents a common mechanism by which tropomyosin mutants 

alter sarcomeric function, perhaps related to the Ca2+-activated movement of tropomyosin 

between the “on” and “off” position during cross-bridge cycling (50, discussed in 55). 

 

Recent studies have attempted to predict the effect of mutations on actin-tropomyosin 

interactions and the resulting contractile abnormality, classifying them as “gain-of-function” 

changes (hyper-contractile phenotype, shift towards “on” state) and “loss-of-function” 

changes (hypo-contractile phenotype, stabilizing the “off” state) (49, 56, 57). Most mutations 

in our cohort are predicted to cause a “loss-of-function” (e.g. decreased Ca2+-sensitivity and a 

hypocontractile phenotype). The only exception is TPM3 K169E, predicted to favour the 

“on” position and enhance myosin-actin binding (49, 56)]. This phenotype was confirmed in 

reconstituted thin filaments in vitro (49). However, isolated slow myofibres and fibre bundles 

Page 14 of 88Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Page 14 of 30 

 

of all TPM3 patients (including Patient 1 carrying the K169E mutation), showed reduced 

Ca2+-sensitivity of contraction. Our data are consistent with the patient phenotype described 

in (1) and do not support the hyper-contractile phenotype of the K169E mutation present in in 

vitro assessment of isolated filaments (49). This discrepancy may be explained by the greater 

complexity of single-fibre contractility studies, a setting that evaluates the combined 

contributions of actin, tropomyosin and troponin binding and regulatory proteins within a 

mature myofibre, which may also have undergone adaptive responses to disease. These may 

not be mirrored by in vitro actin motility studies or predictions via molecular modelling. 

Additional factors, such as interactions with other sarcomeric proteins like the troponin 

complex (58), may also contribute. Additionally, a recurrent mutation in TPM3, R168H, was 

found to reduce [current study and (21)] or increase Ca2+-sensitivity (20) in different patients 

with the same mutation. The cause for this patient to patient variability remains to be 

established. 

In our study, we identified two major abnormalities in contractile performance that we 

believe directly underpins weakness in TPM3-myopathy. Firstly, all patients exhibited 

reduced Ca2+-sensitivity of contraction in slow myofibres, likely resulting in a significant 

reduction in the contractile force generated at physiological, sub-maximal activation of 

muscle. Secondly, slow myofibres demonstrated a significant reduction in cross-bridge 

cycling kinetics and a small reduction in active stiffness (assesses the number of strongly 

bound myosin-actin cross-bridges) – meaning that myosin less effectively and less stably 

transits along actin filaments during contraction.  Collectively, these two abnormalities likely 

cause insufficient force production during a normal action potential resulting in slow fibre 

weakness.   

The selective dysfunction of slow myofibres in our cohort demonstrates the importance of 

assessing the two fibre types separately, and raises the question as to why fast myofibres are 

not able to compensate for dysfunctional slow myofibres. Inherent differences exist between 

the two fibre types. Slow myofibres are less fatigable than fast myofibres, probably due at 

least in part to larger numbers of mitochondria and a greater capacity for oxidative 

metabolism (59, 60). Additionally, fast myofibres have a higher ATP consumption. Particular 

muscle groups, such as respiratory muscles, rely on slow fibres to produce sustained, low 

intensity contractions. Substantial weakness of respiratory muscles is common in TPM3 

patients, and effective treatments that specifically target slow muscle fibre dysfunction may 

ameliorate respiratory insufficiency. 
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In summary, contractile function was commonly impaired in TPM3-myopathy patients. In 

particular, we showed reduced force generation caused by altered cross-bridge cycling 

kinetics and reduced Ca2+-sensitivity of muscle contraction. The identification of abnormal 

Ca2+-sensitivity suggests the use of Ca2+-sensitisers may present a viable therapeutic 

approach for TPM-related myopathies. To date, a number of agents are known to be effective 

at improving Ca2+-sensitivity in isolated skeletal myofibres from various species including 

bovine, human, mouse and rabbit (21, 61-64). Additionally, Ca2+-sensitisers were able to 

ameliorate muscle dysfunction in a rat model of myasthenia gravis (61) and isolated skeletal 

myofibres from congenital myopathy patients with mutations in TPM3, TPM2 and NEB (21, 

62). This therapeutic approach appears to be promising; however, most of these agents target 

the fast troponin isoforms and are unlikely to ameliorate slow fibre dysfunction. A Ca2+-

sensitiser acting on slow skeletal/cardiac troponin-C did not improve Ca2+-sensitivity in 

skeletal myofibres in a recent study, suggesting that new compounds targeting slow myofibre 

dysfunction have yet to be developed (65). Also, it appears that TPM2 and TPM3 mutations 

can either increase or decrease Ca2+-sensitivity in a patient and mutation-specific manner 

(overview in Supplementary Tab. 4), thus Ca2+-sensitisers will only be useful in a subset of 

patients. Patients with increased Ca2+-sensitivity display a hyper-contractile clinical 

phenotype (21, 53), suggesting treatment with Ca2+-sensitisers must be tightly regulated to 

ensure appropriate muscle function and avoid side effects. 

Materials and Methods 

Study approval 

This study was approved by the human ethics committees of the Stollery Children’s Hospital, 

Edmonton, Canada (ID: 5856), Royal Children’s Hospital, Melbourne, Australia (ID: 

21102A), Children’s Hospital at Westmead, Sydney, Australia (ID: 2000/068, 10.CHW.45), 

University of Sydney, Australia (ID: 01/11/50) and Boston Children’s Hospital Institutional 

Review Board (03-08-128R). Informed consent was obtained from all individuals. 

Molecular modelling 

Molecular modelling was based on the 7 Ångstroms resolution crystal structure of an α-

TPMfast dimer isolated from adult porcine ventricles (RCSB Protein Data Bank 1C1G, 

Whitby and Phillips (23)). Molecular graphics were created with Swiss-PDB Viewer v4.1.0 

(66). 
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Antibodies 

Mouse anti-sarcomeric actin (5C5, 1:100 for immunohistochemistry [IHC] and 1:10000 for 

Western blot), fast myosin [MY32, 1:800 for IHC, tropomyosin (TM311, 1:20,000 for 

Western blot and 1:800 for IHC), troponin-Tfast (TNNT3, 1:30 for IHC and 1:1000 for 

Western blot) were obtained from Sigma Aldrich. S283-phosphorylated tropomyosin was 

detected using the rabbit anti-Tm-pS283-050 (1:500 for Western blot and 1:30 for IHC, 21st 

Century Biochemicals) and slow myosin antibodies were obtained from Chemicon (1:800 for 

IHC and 1:7000 for Western blot). Polyclonal α-actinin-3 antibodies were produced in-house 

(antibody 5B3 diluted 1:50 for IHC and antibody 5A2 1:1500 for Western blot) (67). 

Troponin-Islow (MYNT-S, diluted 1:10 for IHC) and fast (MYNT-F, diluted 1:150) 

antibodies were kindly supplied by Takeshi Nakamura, Japan. Troponin-Tslow antibodies 

(CT3) were obtained from the Developmental Studies Hybridoma Bank, University of Iowa 

(diluted 1:50 for IHC). Cardiac actin and neonatal myosin heavy chain (MHC) antibodies 

were obtained from American Research Products Inc, USA and Novocastra Laboratories Ltd, 

UK, respectively. 

 

IHC and Zenon labelling  

IHC was performed as described previously (68). Sections were either fixed as described in 

(37) (MYNT-S) or for 10 min in 3% PFA (MYNT-F, CT3 and TNNT3) or used unfixed 

(other antibodies). A Zenon mouse IgG labelling kit (Molecular Probes) was used to directly 

label primary antibodies with different fluorophores for co-staining with two mouse 

antibodies as per manufacturer’s instructions (either MHC type-2A and type-1 [Fig. 5] or 

neonatal MHC and cardiac actin [Supplementary Fig. 2C]). Staining was imaged using 

standard fluorescence microscopy. 

 

Fibre morphometry 

Fibre morphometry was performed on cryo-sections stained for myosin ATPase (69)] or 

following IHC for MHC isoforms. At least 200 fibres, visible in two distant fields of the same 

section were analysed using ImagePro Plus 4 software (Media Cybernetics). The greatest 

distance between opposite sides of the narrowest aspect, the MinFeret diameter, was 

measured to obtain the fibre diameter from a cross sectional cut. The percentage fibre-size 

disproportion (%FSD) was calculated as described in (1) and slow fibre area was calculated 

assuming circular shape of myofibres. 

Page 17 of 88 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Page 17 of 30 

 

 

Western blot and 2D-polyacrylamide gel electrophoresis (2D-SDS-PAGE) 

Western blot methods were based on (70) and tropomyosin isoforms were resolved as 

described in (53). Extraction of the filamentous protein pool from skeletal muscle sections 

and 2D-SDS-PAGE to determine mutant tropomyosin expression were performed as 

described previously (14, 71). 

 

Protein sources and actin-tropomyosin co-sedimentation 

We employed site-directed mutagenesis to produce wild-type and mutant (R168C, K169E) α-

TPMslow baculoviruses to infect Sf9 insect cells using the baculovirus expression method as 

described previously (72, 73). 

Filamentous actin was prepared from actin-acetone powder isolated from rabbit muscle (74) 

and a 1 µM stock with 1 µM phalloidin and 0.1 mM ATP was used for experiments.  

All protein stocks were prepared in and dialyzed against a buffer containing 100 mM KCl, 50 

mM Imidazole, 8 mM MgCl2, 2 mM EDTA, 10 mM DTT and 0.5 mg/mL ultrapure bovine 

serum albumin (BSA, Sigma). Ten µM tropomyosin stocks were cleared of aggregates by 

ultracentrifugation at 603,180 x g (Sorvall M120-SE centrifuge, S100AT6-0199 rotor) for 20 

min at 4 °C. Ten nM actin were co-sedimented with incremental amounts of tropomyosin 

(50-1000 nM) in 1 mL reaction volume at 51,427 x g for 1.5 hr at 25 °C (Sorvall Evolution 

RC centrifuge, F20-Micro rotor) in siliconised polypropylene tubes. The pelleted fractions 

were solubilised in loading buffer and loaded on 4-15 % Criterion TGX gels (Biorad). 

Densitometry analysis on actin and tropomyosin bands was performed using GeneTools 4.0 

software (Synoptics Ltd). Values were corrected for sedimentation in the absence of actin and 

plotted as the ratio tropomyosin/actin vs. total [tropomyosin] added. Data were fitted to a Hill 

equation to determine the binding constant Kd and Hill’s coefficient h using GraphPad, Prism 

(Version 5.01). 

Contractile measurement of myofibres isolated from frozen human muscle biopsies 

Small fractions of frozen muscle biopsies were thawed as described previously (62) in a 

solution containing 50 % glycerol and 50 % Ca2+-free relaxing-solution (100 mM BES, 6.97 

mM EGTA, 6.48 mM MgCl2, 6 mM Na2ATP, 1 mM DTT, 40.76 mM K-propionate, 14.5 mM 

creatine phosphate, 0.5 mM PMSF, 10 µM E64, 40 µM leupeptin, pH 7.1 and pCa 9 at 15 

°C). 
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For contractile measurements, single fibres or small fibre bundles [~0.07 mm2 cross sectional 

area (CSA) and ~ 0.5 mm length] were dissected in glycerinating solution at 4 °C. Fibre 

bundles were prepared if the fibre CSA was too small for reliable force measurements. 

Aluminium T-clips were attached to both ends of the preparation followed by chemical 

skinning in glycerinating solution containing 1 % TritonX-100 for 10 min (single fibres) or 

30 min (bundles) at 4 °C. The preparations were then stored at 4 °C in glycerinating solution 

until mounting onto a permeabilised fibre apparatus between a length motor and a force 

transducer (ASI 802D, ASI 403A, ASI 315C-I, respectively, Aurora Scientific Inc., Canada) 

in relaxing-solution. All force measurements were performed at sarcomere lengths of 2.5 µm 

[optimal myofilament overlap, (75)] and at a temperature of 20 °C (bath temperature 

controller ASI 825A, Aurora Scientific). The sarcomere length was set and the CSA was 

measured as described in (62). 

 

Prior to [Ca2+]-induced activations preparations were pre-activated for 1 min in 100 mM 

BES, 0.1mM EGTA, 6.42 mM MgCl2, 6 mM Na2ATP, 41.14 mM K-propionate, 14.5 mM 

creatine phosphate, 6.9 mM HDTA (pH 7.1 and pCa 9 at 15 °C). Maximal isometric 

contraction (Fmax) was measured by bathing fibres in saturating [Ca2+] buffer (100 mM BES, 

7 mM CaEGTA, 6.28 mM MgCl2, 6 mM Na2ATP, 40.64 mM K-propionate, 14.5 mM 

creatine phosphate, pH 7.1 and pCa 4.5 at 15 °C) until a force plateau was achieved. The 

maximal specific force (Fmax at pCa 4.5 normalised to the CSA) is presented in this study. 

Force/pCa curves and pCa 50 were measured as described in (20). The rate constant of 

tension re-development (Ktr) was measured by allowing the preparations to shorten to 70% of 

the initial length for 30 ms followed by re-stretch to 100 % and fitting the data to a mono-

exponential function using Labview (National Instruments, USA) as described in (20). Active 

stiffness was measured immediately after the Ktr protocol as described previously (32, 76). In 

brief, we measured the force response (F1) to six 2 s length changes (∆L: +0.3 %, +0.6 %, 

+0.9 %, -0.3 %, -0.6 %, -0.9 %; Supplementary Fig. 4). ∆L was plotted against the force 

changes (∆F) and a linear regression was fitted to obtain the slope using Graph Pad, Prism 

(Version 5.01). 

 

The MHC content of measured fibres was determined as described previously (62) and the 

proportion of each MHC was determined by densitometry. Single myofibres/fibre bundles 

containing exclusively slow MHC (>90 % type-1), exclusively fast MHC (>90 % type-2A or 

2X) or a mixture of both (11–90 % type-1 or type-2A/2X) were grouped for analysis. The 
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contractile properties of bundles and hybrid fibres containing a mix of type-1 and type-2A/2X 

MHC represent the average properties of both fibre types. The Ktr in bundles/hybrid fibres is 

highly variable due to the physiologically difference in type-1 or type-2A/2X fibres and was 

therefore not presented. Preparations were excluded from the analysis if the Fmax decreased 

>15 % during the protocol. Single myofibres from eight control biopsies (age 6-54 y) and 

bundles from two control biopsies (aged 0.6 and 6 y) were pooled for statistical analysis. 
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Figures: 

Fig. 1: Dominant mutations in TPM3 affect amino acids located within or close to actin 

binding domains 

Tropomyosins form α-helical coiled-coil dimers via a seven residue repeat motive in their 

amino acid sequence [a-b-c-d-e-f-g] as illustrated in (A-B). Positions a and d (blue) are 

usually hydrophobic and create a hydrophobic pocket between two tropomyosin chains 

facilitating dimerisation in a “knobs-into-holes” fashion. Positions g and e (green) are 

occupied by charged amino acids that further stabilise the dimer through inter-helical salt 

bridges. Positions b, c and f (yellow) localise to the surface of the TM dimer and likely 

modulate interactions with protein binding partners such as actin and troponin. (C) A ribbon 

model of a whole tropomyosin dimer with the actin binding domains marked in pink on one 

strand. The residues affected by dominant mutations in TPM3 are shown. All affected 

residues are located in or close to actin binding domains. Eight mutations affect residues in 

the b, c or f positions of the repeat (yellow). Three mutations affect residues in the a and d 

position (blue) and two affect residues in the g and e position (green). RCSB Protein Data 

Bank access code for protein structure model is 1C1G [tropomyosin dimer, Whitby and 

Phillips (23)]. Swiss-PDB Viewer v4.1.0 was used to create molecular graphics (66).  

 

Fig. 2: TPM3-myopathy patients have slow fibre hypotrophy and a deregulation of slow 

and fast muscle fibre proportions 

(A) ATPase pH 4.6 stained muscle cross section of one control and four patients with 

mutations at residue R168, of α-TPMslow demonstrating a selective hypotrophy of slow type-1 

myofibres. Fast type-2 fibres are between 1.7 and 5.2 times larger in size than type-1 fibres, 

whereas age-matched controls (age between 0.8 -57 y) showed roughly equally sized fibres 

(B). This corresponds to a fibre-size disproportion (FSD) between 41 % and 78.3 % (C). 

Patients with TPM3 mutations show an abnormal fibre type distribution ranging from 

complete type-1 fibre predominance (A: Patient 10) to type-2 fibre predominance (A: Patient 

8). (D) In the majority of control biopsies between 40-60 % of the CSA is composed of type-

1 fibres. TPM3-myopathy patients have either below 40 % or above 60 % type-1 fibre area. 

Fibre type measurements were performed twice at different times from the same biopsy in 

Patients 2, 3c, 6b and 8 (also see Supplementary Tab. 2) and the plotted values represent the 

average of both measurements. All images were taken at 100x magnification. Fibre size 
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measurements and further information on patient and control biopsies are summarised in 

Supplementary Tab. 2. 

 

Fig. 3: Tropomyosin isoform ratios are not commonly altered and mutant α-TPMslow is 

expressed in TPM3-myopathy patient muscle 

(Ai) A representative Western blot of TPM3-myopathy patient and control muscle tissue 

showing the three skeletal muscle tropomyosin isoforms (β-TPM, α-TMfast and α-TPMslow). In 

normal muscle, type-1 fibres contain about 50:50 α-TPMslow/β-TPM and type-2 fibres contain 

about 50:50 α-TPMfast/β-TPM. Most sample had β-TPM and α-TPMfast/slow levels consistent 

with the relative proportion of type-1 and type-2 fibres present in the sample (% type-1 fibre 

area was determined from ATPase staining, see Supplementary Tab. 2). Only one patient 

(TPM3 M9R mutation, lane 5) had reduced β-TPM levels and increased expression of α-

TPMslow relative to other tropomyosin isoforms and the fibre type proportion in the biopsy as 

described previously (25). (Aii-iiii) Densitometry analysis of Western blots from 10 patients 

with mutations L100M (n=3), R168C (n=1), R168G (n=1), R168H (n=3), K169E (n=1), 

R245G (n=1) was performed to quantify the proportion of each tropomyosin isoform as a 

percentage of total TPM. The relative abundance of each isoform was plotted against the % 

type-1 fibre area (measurements from TPM3 M9R patient are not included). (Aii) β-TPM 

levels are about 50 % of total tropomyosin in patients and controls. (Aiii-iiii) About 50 % of 

tropomyosin is α-TPMfast/slow, but the amount of these fibre-type specific isoforms correlates 

closely with the % type-1 fibre area in both patients and controls (positive correlation for α-

TPMslow, negative correlation for α-TPMfast). Linear regression analysis showed that slopes of 

patient and controls were not significantly different for any of the three isoforms (p=0.4997, 

0.9538 and 0.4595 for α-TPMslow, α-TPMfast and β-TPM, respectively). (B) Isoelectric 

focusing of patient and control muscle lysates shows three spots (corresponding to β-TPM, α-

TPMfast, α-TPMslow). An additional spot (marked by an arrow) consistent with the predicted 

isoelectric point (pI) of each mutation (as annotated, wild-type α-TPMslow is 4.69) is present 

in patient biopsies. Mutant α-TPMslow accounted for 27-45% of total α-TPMslow in different 

patient biopsies (annotated in the blot, the proportion of each tropomyosin in patient slow 

fibres is given in Supplementary Tab. 3). Note the ratio of expression of α-TPMfast/slow 

depends on the percentage of slow and fast myofibres in the biopsy (e.g. Patient 8 (R168C) 

mainly contains fast myofibres). Picture 3 from the left in (B) is reprinted from Neuromuscul 
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Disord, 20/7 Waddell et al., Evidence for a dominant negative disease mechanism in cap 

myopathy due to TPM3, 464-466, Copyright (2010), with permission from Elsevier. 

 

Fig. 4: Mutant α-TPMslow R168C proteins has a reduced affinity to filamentous actin 

Phalloidin stabilised actin filaments were co-sedimented with incremental amounts of 

tropomyosin and the pelleted fractions were analysed by SDS-PAGE. (A) A representative 

SDS-PAGE of wild-type α-TPMslow protein as was used for densitometry analysis. (B) The 

ratio of TPM/actin was plotted vs. total [TPM] added and a Hill’s equation was fitted. The Kd 

was increased in α-TPMslow R168C compared to α-TPMslow wild-type and K169E suggesting 

weaker binding affinity to actin (771.4±188.6 nM, 180.2±37.6 nM, 164.0±110.6 nM for α-

TPMslow R168C, wild-type and K169E, respectively). The Hill’s coefficient h and maximal 

binding (Bmax) was similar in all three proteins (h = wild-type 4.471±3.0, R168C 3.308±2.4, 

K169E 1.602±1.3; Bmax wild-type 0.489±0.055, R168C 0.431±0.078 and K169E 

0.443±0.156). Values are best-fit values ± 95% confidence interval. 

 

Fig. 5: TPM3 patients show increased phosphorylation of tropomyosin and ectopic 

expression of fast fibre specific α-actinin-3 in slow myofibres 

(A) Consecutive sections were labelled with type-1 and type-2a MHC (blue and green, co-

labelled respectively), type-2 MHC (red), α-actinin-3 (green) and troponin-Tfast (green) (the 

same fibre in multiple stains is indicated by a white arrow). Troponin-Tfast is only expressed 

in fast fibres as expected. Abnormal expression of α-actinin-3, a fast fibre specific Z-disc 

protein, was observed in type-1 myofibres of Patients 10, 4 and 6a (yellow stars). The biopsy 

of Patient 6b showed similar abnormalities but is not shown in this panel. Other patients had 

normal expression of α-actinin-3. Staining of Patient 1 and 8 are representative for these 

patients. (Bi) S283 is conserved and can be phosphorylated in all three sarcomeric 

tropomyosin proteins. (Bii) We assessed the level of S283 phosphorylation (pTPM) and total 

tropomyosin protein levels by duplicate Western blot and equal loading was confirmed by 

using sarcomeric actin (s Actin) (representative Western blot shown). The phosphorylation 

status of all three tropomyosin isoforms was determined by densitometry and normalised to 

the total tropomyosin levels. The graph shows phosphorylation levels normalised to the 

control average in (Biii) TPM3 patients and (Biiii) patients with congenital myopathies and 

muscular dystrophies due to mutations in TPM3, TPM2, ACTA1, DNM2, DMD and DYSF. 

Horizontal lines and error bars represent mean and standard deviation. Phosphorylation was 

commonly increased in both TPM3 patients and patients with other genetic causes of muscle 

Page 28 of 88Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Page 28 of 30 

 

disease. Statistical analysis was only performed on patients with the R168H mutation due to 

insufficient data points for other groups. Phosphorylation was significantly higher in patients 

with the R168H mutation compared to controls (*p<0.05, Mann-Whitney U test).  

 

Fig. 6: The force generation at saturating [Ca
2+

] is decreased in TPM3-myopathy 

patients 

Maximal force generation (Fmax) measured at pCa 4.5 and sarcomere length of 2.5 µm, 

normalised to fibre CSA. (A) A typical force trace from a patient (Patient 6) and control type-

1 fibre. Most TPM3 patients showed a significant force deficit in type-1 myofibres (C) 

whereas type-2 fibres produced similar maximal force compared to controls (B). In hybrid 

fibres and fibre bundles all patients had a slightly lower force average, however only Patient 

1 showed a significant force deficit (D). Cslow = Control type-1 fibres (pooled from eight 

biopsies aged: 11-54 y), Cfast = Control type-2 fibres (pooled from eight biopsies aged: 6-54 

y), Ch/b= Control hybrid fibres (contain a mix of type-1 and type-2 MHC, age 11-54 y) and 

small fibre bundles (bundles were taken from two biopsies of 0.9 y and 6 y old controls). P = 

Patient. The black line in (B-D) indicates the average. *** p<0.0001, * p<0.01, one-way 

ANOVA. 

 

Fig. 7: The force deficit in TPM3-myopathy patients is likely due to abnormal cross-

bridge cycling 

We assessed the rate of tension re-development (Ktr) (A)) and active stiffness (B) in TPM3-

myopathy patients to investigate if the force deficit in patient type-1 fibres was due to altered 

cross-bridge cycling. A typical Ktr trace of a patient (Patient 6) and a control are shown in 

(Ai). The Ktr in single myofibres from TPM3 patient biopsies and control biopsies are shown 

in (Aii) (type-1) and (Aiii) (type-2). Note that due to different MHC-ATPase properties the 

Ktr is physiologically higher in type-2 than in type-1 fibres. (Aii) The type-1 fibres of most 

TPM3 patients showed a significant decrease in Ktr compared to control type-1 fibres 

(exceptions: Patient 1, 2 and 3a (*** p<0.0001, * p<0.01, one-way ANOVA) (Aiii) The type-

2 fibres were not different to control type-2 fibres, with the exception of Patient 6 which 

showed a small decrease in Ktr. (B) Active stiffness was analysed by plotting the length 

changes (∆L) against the force changes (∆F) and fitting a linear regression to the data. A 

representative graph of type-1 fibres from Patient 4 and from controls is shown in (Bi: 

absolute length change) and (Bii: length change/Fmax). Graphs from other all other samples 
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are presented in Supplementary Fig. 6. Error bars represent standard deviation. (Biii-v) The 

slope of the linear regression was not significantly different from controls in all fibre-types in 

most patients with the exception of type-1 fibres or bundles/hybrid fibres of Patient 1, 2 and 7 

where stiffness was reduced (*p<0.01 ,**p<0.001 ,*** p <0.0001, one-way ANOVA). 

However, a trend towards a small reduction was present in type-1 fibres and bundles/hybrid 

fibres of most patients (Biii-iiii). (vi-vii) When ∆F was normalised to Fmax the slope was not 

significantly different from controls with the exception of P3c, which showed an increase in 

the slope (I, *** p <0.0001, one-way ANOVA). Error bars represent standard deviation. Cslow 

and Cfast = Control type-1 and type-2 fibres (pooled from eight biopsies aged: 11 - 54 y), Ch/b 

= Control hybrid fibres (contain a mix of type-1 and type-2 MHC, age 6 - 54 y) and small 

fibre bundles (bundles were taken from two biopsies of 0.9 y and 6 y old controls). The black 

line in all scatter plots indicates the average. 

 

Fig. 8: Ca
2+

-sensitivity is decreased in TPM3-myopathy patients resulting in reduced 

specific force generation at physiological [Ca
2+

] 

(A) Specific force generation at incremental [Ca2+] in skinned type-1 fibres (i), hybrid fibres 

or bundles (ii) and type-2 fibres (C) shown as percent of Fmax fitted to a variable slope log 

(dose) response curve. Note the rightward shift of the force/pCa curve in type-1 fibres, hybrid 

fibres/bundles in TPM3 patients, whereas type-2 fibres were not different to controls. The 

dotted lines indicate the pCa50 ([Ca2+] required to achieve 50 % of maximal force) and the 

yellow area indicates physiological cytoplasmic [Ca2+] during muscle contraction (between 1 

- 5 µM) (B) The pCa 50 was significantly higher in type-1 fibres, hybrid fibres/ bundles of 

TPM3 patients compared to controls and type-2 fibres of TPM3 patients. (C) Specific force 

generation measured at pCa 6.0 (1 µM, physiological calcium). The force was significantly 

lower in (i) type-1 fibres and (ii) hybrid fibres/bundles of all TPM3 patients, but was not 

different from controls in (iii) type-2 fibres. Cslow and Cfast = Control type-1 and type-2 fibres 

(pooled from eight biopsies aged: 11-54 y), Ch/b = Control hybrid fibres (contain a mix of 

type-1 and type-2 MHC, age 6-54 y) and small fibre bundles (bundles were taken from two 

biopsies of 0.9 y and 6 y old controls). The black line in the scatter plot indicates the average 

and error bars in force/pCa curves are standard deviations. *** p<0.0001, * p<0.01, one-way 

ANOVA. P=Patient, C= control. 
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Table 1: Patient cohort with dominant TPM3 mutations 

P Mutation 

in TPM3 

Disease Muscle 

type 

Sex Age at 

biopsy 

Clinical 

classification 

Publication Contractile 

studies 

1 K169E CFTD Q M 16 m moderate (1): P 2 Y 
2 R245G CFTD Q M 20 m moderate (1): P 1 Y 
3a L100M CFTD Q F 3 y mild (1): P 5 Y 
3b L100M CFTD B M 30 y mild (1): P 7 Y 
3c L100M CFTD B M 36 y mild (1): P 8 Y 
4 R168G CFTD Q M 10 y mild (1): P 3 Y 
5 R168H  CFTD Q F 40 y mild unpublished Y 
6a R168H NM D F 20 y mild (1): P 10 N 
6b R168H  CFTD ? M 56 y mild (1): P 11 Y 
7 R168C Cap ? M 3 y mild (14): P 1 Y 
8 R168C CFTD Q F 19 y moderate (1): P 9 Y 
9 M9R NM Q F 21 y mild (8); (37): P 1 N 
10 R168H NM D M 53 y mild (13): P III-4 N 
11 E241K CFTD Q F 0.5y moderate (2): P 311-1 N 
12 R91P CFTD Q F 0.5y severe (2): P 913-1 N 

Q=Quadriceps, B = Biceps, D = Deltoid, P = Patient 

 

Abbreviations 

α-tropomyosinslow      α-TPMslow 

α-tropomyosinfast      α-TPMfast 

bovine serum albumin      BSA 

β-tropomyosin       β-TPM 

congenital fibre-type disproportion    CFTD 

cross sectional area      CSA 

immunohistochemistry     IHC 

−log of molar free [Ca2+]     pCa 

maximal isometric contraction     Fmax 

myosin heavy chain      MHC 

percentage fibre-size disproportion     % FSD 

phosphate buffered saline      PBS 

two-dimensional SDS polyacrylamide gel electrophoresis 2D-SDS-PAGE 
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Fig. 1: Dominant mutations in TPM3 affect amino acids located within or close to actin binding domains  
Tropomyosins form α-helical coiled-coil dimers via a seven residue repeat motive in their amino acid 

sequence [a-b-c-d-e-f-g] as illustrated in (A-B). Positions a and d (blue) are usually hydrophobic and create 
a hydrophobic pocket between two tropomyosin chains facilitating dimerisation in a “knobs-into-holes” 
fashion. Positions g and e (green) are occupied by charged amino acids that further stabilise the dimer 

through inter-helical salt bridges. Positions b, c and f (yellow) localise to the surface of the TM dimer and 
likely modulate interactions with protein binding partners such as actin and troponin. (C) A ribbon model of 

a whole tropomyosin dimer with the actin binding domains marked in pink on one strand. The residues 

affected by dominant mutations in TPM3 are shown. All affected residues are located in or close to actin 
binding domains. Eight mutations affect residues in the b, c or f positions of the repeat (yellow). Three 
mutations affect residues in the a and d position (blue) and two affect residues in the g and e position 
(green). RCSB Protein Data Bank access code for protein structure model is 1C1G [tropomyosin dimer, 

Whitby and Phillips (23)]. Swiss-PDB Viewer v4.1.0 was used to create molecular graphics (66).  
177x107mm (300 x 300 DPI)  
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Fig. 2: TPM3-myopathy patients have slow fibre hypotrophy and a deregulation of slow and fast muscle fibre 
proportions  

(A) ATPase pH 4.6 stained muscle cross section of one control and four patients with mutations at residue 

R168, of α-TPMslow demonstrating a selective hypotrophy of slow type-1 myofibres. Fast type-2 fibres are 
between 1.7 and 5.2 times larger in size than type-1 fibres, whereas age-matched controls (age between 
0.8 -57 y) showed roughly equally sized fibres (B). This corresponds to a fibre-size disproportion (FSD) 
between 41 % and 78.3 % (C). Patients with TPM3 mutations show an abnormal fibre type distribution 

ranging from complete type-1 fibre predominance (A: Patient 10) to type-2 fibre predominance (A: Patient 
8). (D) In the majority of control biopsies between 40-60 % of the CSA is composed of type-1 fibres. TPM3-
myopathy patients have either below 40 % or above 60 % type-1 fibre area. Fibre type measurements were 

performed twice at different times from the same biopsy in Patients 2, 3c, 6b and 8 (also see 
Supplementary Tab. 2) and the plotted values represent the average of both measurements. All images 

were taken at 100x magnification. Fibre size measurements and further information on patient and control 
biopsies are summarised in Supplementary Tab. 2.  

177x106mm (300 x 300 DPI)  
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Fig. 3: Tropomyosin isoform ratios are not commonly altered and mutant α-TPMslow is expressed in TPM3-
myopathy patient muscle  

(Ai) A representative Western blot of TPM3-myopathy patient and control muscle tissue showing the three 
skeletal muscle tropomyosin isoforms (β-TPM, α-TMfast and α-TPMslow). In normal muscle, type-1 fibres 

contain about 50:50 α-TPMslow/β-TPM and type-2 fibres contain about 50:50 α-TPMfast/β-TPM. Most 
sample had β-TPM and α-TPMfast/slow levels consistent with the relative proportion of type-1 and type-2 

fibres present in the sample (% type-1 fibre area was determined from ATPase staining, see Supplementary 
Tab. 2). Only one patient (TPM3 M9R mutation, lane 5) had reduced β-TPM levels and increased expression 

of α-TPMslow relative to other tropomyosin isoforms and the fibre type proportion in the biopsy as described 
previously (25). (Aii-iiii) Densitometry analysis of Western blots from 10 patients with mutations L100M 

(n=3), R168C (n=1), R168G (n=1), R168H (n=3), K169E (n=1), R245G (n=1) was performed to quantify 
the proportion of each tropomyosin isoform as a percentage of total TPM. The relative abundance of each 

isoform was plotted against the % type-1 fibre area (measurements from TPM3 M9R patient are not 
included). (Aii) β-TPM levels are about 50 % of total tropomyosin in patients and controls. (Aiii-iiii) About 50 
% of tropomyosin is α-TPMfast/slow, but the amount of these fibre-type specific isoforms correlates closely 

with the % type-1 fibre area in both patients and controls (positive correlation for α-TPMslow, negative 
correlation for α-TPMfast). Linear regression analysis showed that slopes of patient and controls were not 

significantly different for any of the three isoforms (p=0.4997, 0.9538 and 0.4595 for α-TPMslow, α-TPMfast 
and β-TPM, respectively). (B) Isoelectric focusing of patient and control muscle lysates shows three spots 
(corresponding to β-TPM, α-TPMfast, α-TPMslow). An additional spot (marked by an arrow) consistent with 

the predicted isoelectric point (pI) of each mutation (as annotated, wild-type α-TPMslow is 4.69) is present 
in patient biopsies. Mutant α-TPMslow accounted for 27-45% of total α-TPMslow in different patient biopsies 
(annotated in the blot, the proportion of each tropomyosin in patient slow fibres is given in Supplementary 

Tab. 3). Note the ratio of expression of α-TPMfast/slow depends on the percentage of slow and fast 
myofibres in the biopsy (e.g. Patient 8 (R168C) mainly contains fast myofibres). Picture 3 from the left in 
(B) is reprinted from Neuromuscul Disord, 20/7 Waddell et al., Evidence for a dominant negative disease 
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mechanism in cap myopathy due to TPM3, 464-466, Copyright (2010), with permission from Elsevier.  
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Fig. 4: Mutant α-TPMslow R168C proteins has a reduced affinity to filamentous actin  
Phalloidin stabilised actin filaments were co-sedimented with incremental amounts of tropomyosin and the 

pelleted fractions were analysed by SDS-PAGE. (A) A representative SDS-PAGE of wild-type α-TPMslow 

protein as was used for densitometry analysis. (B) The ratio of TPM/actin was plotted vs. total [TPM] added 
and a Hill’s equation was fitted. The Kd was increased in α-TPMslow R168C compared to α-TPMslow wild-

type and K169E suggesting weaker binding affinity to actin (771.4±188.6 nM, 180.2±37.6 nM, 164.0±110.6 
nM for α-TPMslow R168C, wild-type and K169E, respectively). The Hill’s coefficient h and maximal binding 
(Bmax) was similar in all three proteins (h = wild-type 4.471±3.0, R168C 3.308±2.4, K169E 1.602±1.3; 
Bmax wild-type 0.489±0.055, R168C 0.431±0.078 and K169E 0.443±0.156). Values are best-fit values ± 

95% confidence interval.  
90x87mm (300 x 300 DPI)  
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Fig. 5: TPM3 patients show increased phosphorylation of tropomyosin and ectopic expression of fast fibre 
specific α-actinin-3 in slow myofibres  

(A) Consecutive sections were labelled with type-1 and type-2a MHC (blue and green, co-labelled 
respectively), type-2 MHC (red), α-actinin-3 (green) and troponin-Tfast (green) (the same fibre in multiple 
stains is indicated by a white arrow). Troponin-Tfast is only expressed in fast fibres as expected. Abnormal 
expression of α-actinin-3, a fast fibre specific Z-disc protein, was observed in type-1 myofibres of Patients 
10, 4 and 6a (yellow stars). The biopsy of Patient 6b showed similar abnormalities but is not shown in this 
panel. Other patients had normal expression of α-actinin-3. Staining of Patient 1 and 8 are representative 

for these patients. (Bi) S283 is conserved and can be phosphorylated in all three sarcomeric tropomyosin 
proteins. (Bii) We assessed the level of S283 phosphorylation (pTPM) and total tropomyosin protein levels 

by duplicate Western blot and equal loading was confirmed by using sarcomeric actin (s Actin) 
(representative Western blot shown). The phosphorylation status of all three tropomyosin isoforms was 

determined by densitometry and normalised to the total tropomyosin levels. The graph shows 
phosphorylation levels normalised to the control average in (Biii) TPM3 patients and (Biiii) patients with 

congenital myopathies and muscular dystrophies due to mutations in TPM3, TPM2, ACTA1, DNM2, DMD and 
DYSF. Horizontal lines and error bars represent mean and standard deviation. Phosphorylation was 

commonly increased in both TPM3 patients and patients with other genetic causes of muscle disease. 
Statistical analysis was only performed on patients with the R168H mutation due to insufficient data points 
for other groups. Phosphorylation was significantly higher in patients with the R168H mutation compared to 

controls (*p<0.05, Mann-Whitney U test).  

192x180mm (300 x 300 DPI)  
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Fig. 6: The force generation at saturating [Ca2+] is decreased in TPM3-myopathy patients  
Maximal force generation (Fmax) measured at pCa 4.5 and sarcomere length of 2.5 µm, normalised to fibre 
CSA. (A) A typical force trace from a patient (Patient 6) and control type-1 fibre. Most TPM3 patients showed 

a significant force deficit in type-1 myofibres (C) whereas type-2 fibres produced similar maximal force 
compared to controls (B). In hybrid fibres and fibre bundles all patients had a slightly lower force average, 
however only Patient 1 showed a significant force deficit (D). Cslow = Control type-1 fibres (pooled from 
eight biopsies aged: 11-54 y), Cfast = Control type-2 fibres (pooled from eight biopsies aged: 6-54 y), 

Ch/b= Control hybrid fibres (contain a mix of type-1 and type-2 MHC, age 11-54 y) and small fibre bundles 
(bundles were taken from two biopsies of 0.9 y and 6 y old controls). P = Patient. The black line in (B-D) 

indicates the average. *** p<0.0001, * p<0.01, one-way ANOVA.  
172x118mm (300 x 300 DPI)  
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Fig. 7: The force deficit in TPM3-myopathy patients is likely due to abnormal cross-bridge cycling  
We assessed the rate of tension re-development (Ktr) (A)) and active stiffness (B) in TPM3-myopathy 

patients to investigate if the force deficit in patient type-1 fibres was due to altered cross-bridge cycling. A 
typical Ktr trace of a patient (Patient 6) and a control are shown in (Ai). The Ktr in single myofibres from 

TPM3 patient biopsies and control biopsies are shown in (Aii) (type-1) and (Aiii) (type-2). Note that due to 
different MHC-ATPase properties the Ktr is physiologically higher in type-2 than in type-1 fibres. (Aii) The 
type-1 fibres of most TPM3 patients showed a significant decrease in Ktr compared to control type-1 fibres 
(exceptions: Patient 1, 2 and 3a (*** p<0.0001, * p<0.01, one-way ANOVA) (Aiii) The type-2 fibres were 

not different to control type-2 fibres, with the exception of Patient 6 which showed a small decrease in Ktr. 
(B) Active stiffness was analysed by plotting the length changes (∆L) against the force changes (∆F) and 

fitting a linear regression to the data. A representative graph of type-1 fibres from Patient 4 and from 
controls is shown in (Bi: absolute length change) and (Bii: length change/Fmax). Graphs from other all other 
samples are presented in Supplementary Fig. 6. Error bars represent standard deviation. (Biii-v) The slope 
of the linear regression was not significantly different from controls in all fibre-types in most patients with 
the exception of type-1 fibres or bundles/hybrid fibres of Patient 1, 2 and 7 where stiffness was reduced 

(*p<0.01 ,**p<0.001 ,*** p <0.0001, one-way ANOVA). However, a trend towards a small reduction was 
present in type-1 fibres and bundles/hybrid fibres of most patients (Biii-iiii). (vi-vii) When ∆F was normalised 
to Fmax the slope was not significantly different from controls with the exception of P3c, which showed an 
increase in the slope (I, *** p <0.0001, one-way ANOVA). Error bars represent standard deviation. Cslow 
and Cfast = Control type-1 and type-2 fibres (pooled from eight biopsies aged: 11 - 54 y), Ch/b = Control 

hybrid fibres (contain a mix of type-1 and type-2 MHC, age 6 - 54 y) and small fibre bundles (bundles were 
taken from two biopsies of 0.9 y and 6 y old controls). The black line in all scatter plots indicates the 
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Fig. 8: Ca2+-sensitivity is decreased in TPM3-myopathy patients resulting in reduced specific force 
generation at physiological [Ca2+]  

(A) Specific force generation at incremental [Ca2+] in skinned type-1 fibres (i), hybrid fibres or bundles (ii) 

and type-2 fibres (C) shown as percent of Fmax fitted to a variable slope log (dose) response curve. Note 
the rightward shift of the force/pCa curve in type-1 fibres, hybrid fibres/bundles in TPM3 patients, whereas 
type-2 fibres were not different to controls. The dotted lines indicate the pCa50 ([Ca2+] required to achieve 

50 % of maximal force) and the yellow area indicates physiological cytoplasmic [Ca2+] during muscle 
contraction (between 1 - 5 µM) (B) The pCa 50 was significantly higher in type-1 fibres, hybrid fibres/ 
bundles of TPM3 patients compared to controls and type-2 fibres of TPM3 patients. (C) Specific force 

generation measured at pCa 6.0 (1 µM, physiological calcium). The force was significantly lower in (i) type-1 
fibres and (ii) hybrid fibres/bundles of all TPM3 patients, but was not different from controls in (iii) type-2 

fibres. Cslow and Cfast = Control type-1 and type-2 fibres (pooled from eight biopsies aged: 11-54 y), Ch/b 
= Control hybrid fibres (contain a mix of type-1 and type-2 MHC, age 6-54 y) and small fibre bundles 
(bundles were taken from two biopsies of 0.9 y and 6 y old controls). The black line in the scatter plot 

indicates the average and error bars in force/pCa curves are standard deviations. *** p<0.0001, * p<0.01, 
one-way ANOVA. P=Patient, C= control.  
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Abstract 

Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy 

characterised by generalised muscle weakness. Here, we used a multidisciplinary approach to 

investigate the mechanism of muscle dysfunction in twelve TPM3-myopathy patients. 

We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and 

is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre 

predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and 

normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate 

that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a 

dominant-negative effect of mutant protein on muscle contraction. Molecular modelling 

suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, 

indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow 

(R168C) to filamentous actin. 

Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific 

abnormalities. At saturating [Ca2+] (pCa 4.5), patient slow fibres produced only 63% of the 

contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge 

cycling kinetics. Importantly, due to reduced Ca2+-sensitivity, at sub-saturating [Ca2+] (pCa 6, 

levels typically released during in vivo contraction) patient slow fibres produced only 26% of 

the force generated by control slow fibres.  

Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre 

force at physiological [Ca2+], and impaired acto-myosin cross-bridge cycling kinetics. Fast 

myofibres are spared; however, they appear to be unable to compensate for slow fibre 

dysfunction. Abnormal Ca2+-sensitivity in TPM3-myopathy patients suggests Ca2+-sensitising 

drugs may represent a useful treatment for this condition.  
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Introduction 

Dominant mutations in the TPM3 gene, encoding α-tropomyosinslow (α-TPMslow), cause a 

congenital myopathy characterised by mild to moderate early onset, non-progressive 

generalised muscle weakness (1-3). Axial and respiratory muscles are commonly involved 

and many patients require night-time ventilatory support (1, 2). Recessive mutations, causing 

loss of protein, are rare with only four instances reported to date in patients with relatively 

severe clinical presentations (4-7). In contrast, more than 40 families with dominant TPM3 

missense mutations have been identified involving 19 different residues (1, 3, 7-13), 

Supplementary Tab. 1). Histologically, many TPM3 patients present with slow skeletal 

myofibre hypotrophy in the absence of additional pathological features, resulting in a clinical 

diagnosis of congenital fibre-type disproportion (CFTD) (3). Some patients also exhibit 

nemaline bodies or cores in myofibres and are classified as nemaline myopathy (8) or core 

myopathy (1, 11, 14), respectively. The same mutation in TPM3 can cause a variety of 

histological phenotypes (Supplementary Tab. 1) (1, 3, 7, 14).  

Three tropomyosin isoforms are present in the skeletal muscle sarcomere (15). TPM1 and 

TPM3 encode the two α-tropomyosins expressed exclusively in fast fibres (TPM1; α-TPMfast, 

Tpm1.st) or slow fibres (TPM3; α-TPMslow, Tpm3.12st), respectively. TPM2 encodes β-

tropomyosin (β-TPM, Tpm2.2st) and is expressed in both fibre types (15-17). Tropomyosin 

forms alpha-helical coiled-coil heterodimers between one α- and one β-chain. These dimers 

polymerise head-to-tail into a continuous filament that associates along the entire length of 

the actin thin filament and interacts with the troponin complex to regulate Ca2+-mediated 

actin-myosin cross-bridge cycling during muscle contraction. The structure of tropomyosin is 

conferred by a seven residue repeat motive [a-b-c-d-e-f-g] (Fig. 1A and B) (18). Residues at 

positions a and d in the repeat are typically hydrophobic, creating a hydrophobic pocket 
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between two tropomyosin chains facilitating dimerisation (blue). Charged residues at 

positions g and e (green) stabilise the dimer through inter-helical salt bridges. Positions b, c 

and f (yellow) localise to the surface of tropomyosin dimers and likely modulate interactions 

with proteins such as actin and troponin.  

 

Many dominant TPM3 mutations (11/19) affect positions b, c or f on the outer surface of the 

dimer (Fig. 1C, yellow). Only five mutations affect positions a and d in the hydrophobic 

pocket (Fig. 1C, blue) and three mutations affect positions g and e constituting the inter-

helical salt bridges (Fig. 1C, green). All mutations fall within, or very close to, one of the 

seven actin binding regions of tropomyosin (Fig. 1C, purple shaded area of the molecule) 

(19). In particular, there is a striking concentration of mutations within the fifth actin-binding 

region of α-TPMslow (R168H, R168G, R168C, K169E, E174A) some of which are recurrent 

in several unrelated families (e.g. R168 residue is mutated in 20 different families). 

Although the structure and function of tropomyosin is well established, the mechanism(s) by 

which mutations in TPM3 cause muscle weakness remains poorly understood. Two recent 

studies showed that four patients with dominant TPM3 mutations had abnormal cross-bridge 

cycling kinetics and Ca2+-sensitivity of contraction in single skeletal myofibres isolated from 

patient biopsies [n=3 (20), n=1 (21)]. However, these studies were limited by small sample 

sizes, and separate assessment of the properties of slow versus fast myofibres was only 

possible to a limited extend. In this study, we aimed to unravel the mechanism of muscle 

weakness in a cohort of 12 patients with dominant TPM3 mutations. We performed thorough 

histological characterisation, assessed thin filament protein expression and quantified the 

contractile properties of single myofibres isolated from patient muscle specimens (10/12 

patients, Tab. 1). 
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Results 

TPM3-myopathy patients have slow fibre hypotrophy and deregulation of slow and 

fast muscle fibre proportions 

The main histological characteristic in all patients with TPM3 mutations is selective 

hypotrophy of slow-twitch type-1 fibres, compared to fast-twitch type-2 fibres (1, 3, 7) (Fig. 

2A, ATPase pH 4.6, slow myofibres appear dark; see Supplementary Tab. 2 for 

measurements). On average, fast fibres were between 1.7 and 5.2 times larger in diameter 

than slow fibres (Fig. 2B), corresponding to a %FSD of 41 % - 78.3 % (Fig. 2C). The 

selective hypotrophy of slow fibres in TPM3 patients is consistent with the slow-fibre 

specific expression of α-TPMslow. 

Additionally, fibre-typing was skewed in patient biopsies, either towards fast fibre 

predominance (five patients, less than 30 % slow fibre area) or slow fibre predominance (six 

patients, more than 60 % slow fibre area), compared to age-matched control biopsies where 

the CSA occupied by either fibre-type is approximately 50:50 [this study and (22, 23)] (Fig. 

2D). Only one patient biopsy showed normal slow-fast fibre distribution (between 40-60 % 

slow fibre area). 

 

Tropomyosin isoform ratios are not commonly altered in TPM3-myopathy patients  

In normal muscle, the ratio of α/β tropomyosin molecules is approximately 50:50 β-TPM/α-

TPMfast in fast fibres and 50:50 β-TPM/α-TPMslow in slow fibres (24). A patient and 

transgenic mouse model carrying the TPM3 M9R mutation, the first mutation associated with 

nemaline myopathy, showed an imbalance of this ratio, with a dramatic excess of α-TPMslow 

relative to β-TPM in skeletal muscle (25) (Fig. 3Ai, Lane 5). This disruption in tropomyosin 

stoichiometry was proposed as a potential mechanism of muscle weakness (25). In contrast, 

in this cohort of 12 TPM3-myopathy patients, we observed normal ratios of α/β tropomyosin, 

Page 48 of 88Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

similar to controls (Fig. 3Ai). The scatter plots in Fig. 3Aii-iiii show the relative levels of 

each tropomyosin isoform relative to the type-1 fibre CSA, as determined by ATPase 

staining. β-TPM is present at equal amounts in slow and fast myofibres in all samples (~50 % 

of total tropomyosin, Fig. 3Aii). The relative expression of α-TPMslow and α-TPMfast 

correlates well with type-1 fibre CSA (positive correlation for α-TPMslow and negative 

correlation for α-TPMfast, Fig. 3Aiii and 3Aiiii). The linear regression slope fitted to the data 

was not significantly different between patients and controls, demonstrating a normal ratio of 

α/β tropomyosin isoforms in fast and slow fibres. 

 

Mutant α-TPMslow is expressed in muscle of TPM3-myopathy patients 

The autosomal dominant inheritance of TPM3 mutations within our cohort is consistent with 

the hypothesis that mutant α-TPMslow is expressed in slow skeletal myofibres and causes 

disease via a dominant-negative effect on thin filament function. To confirm mutant α-

TPMslow is present in patient muscle, we isolated the filamentous fractions (representing 

proteins incorporated in high-molecular weight structures such as sarcomeres) and performed 

2D-SDS-PAGE. Five patients in our cohort from whom skeletal muscle samples were 

available, had a mutation that resulted in an amino-acid substitutions affecting a charged 

residue leading to a predicted alteration in the isoelectric point (pI) of α-TPMslow. Thus, 

isoelectric focusing allowed us to separate the mutant from the wild-type protein on the basis 

of charge in these patients, and the second dimension urea-SDS gel separated the three 

tropomyosin isoforms from each other. The mutant α-TPMslow protein could then be observed 

as a left-sided (Fig. 3B; R186G, R91P, K169E, R168C) or right-sided shift (Fig. 3B, E241K) 

from the wild-type α-TPMslow and was present in all patient muscles. The total pool of α-

TPMslow (both wild-type and mutant isoforms) correlated with the slow fibre CSA (% type-1 

fibre area annotated above each blot, see Supplementary Tab. 2 for measurements). However, 
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mutant α-TPMslow was less abundant compared to wild-type, ranging from 27 to 45 % of total 

α-TPMslow (% mutant α-TPMslow annotated on each blot).  

 

The actin-binding properties of K169E and R168C mutant α-TPMslow proteins are 

altered 

The position of many TPM3 mutations within or close to actin binding sites suggest most 

mutations may influence interactions between α-TPMslow and actin filaments. Therefore, we 

performed actin-tropomyosin co-sedimentation assays with two recombinant mutant α-

TPMslow proteins (R168C and K169E) and compared their actin binding properties to wild-

type α-TPMslow. These mutations were chosen because they are both located in the fifth actin 

binding domain, the area that harbours a hotspot for myopathy causing mutations, and affect 

amino acids predicted to be involved in actin interactions. We co-sedimented incremental 

amounts of each of the three α-TPMslow proteins with 100 nM filamentous skeletal actin. Fig. 

4A shows a representative SDS-PAGE of the filamentous fraction isolated following 

ultracentrifugation, demonstrating dose-dependent binding of wild-type α-TPMslow to actin 

filaments. Densitometry data of the bound fraction versus the total amount of α-TPMslow 

added to the reaction was fitted to a Hill equation, to determine the binding constant Kd and 

the Hill coefficient (h) for all three α-TPMslow proteins (Fig. 4B). The α-TPMslow R168C 

protein showed reduced actin binding affinity compared to wild-type or the α-TPMslow K169E 

protein (Kd = 771.4±188.6 nM for R168C, 180.2±37.6 nM for wild-type and 164.0±110.6 nM 

for K169E, range represents 95% confidence interval). The Hill coefficient was similar in all 

three mutations (h = wild-type 4.471±3.0, R168C 3.308±2.4, K169E 1.602±1.3). These 

results suggest actin binding may be the mechanism by which the TPM3 R168C mutation 

alters contractile function and causes muscle weakness. 
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Fast fibre specific α-actinin-3 is ectopically expressed in slow fibres of patients with 

R168H/G TPM3 mutations 

As many TPM3 patient biopsies displayed a skewing to either slow- or fast- fibre 

predominance by ATPase stain, we stained serial muscle sections with antibodies recognizing 

fibre-type specific isoforms of MHC, troponin and α-actinin to investigate whether the 

expression of several fibre-type-specific proteins was normal (Fig. 5A, Supplementary Fig. 

1). Three patients (Patients 4, 6a and 6b, each with R168 substitutions), showed elevated 

levels of hybrid fibres expressing both slow and fast myosin isoforms. All other patients 

showed normal fibre profiling of myosin and troponin. Curiously, when further 

characterizing the expression profile of hybrid fibres in Patients 4, 6a, 6b and 10, we 

observed ectopic expression of α-actinin-3 in dedicated slow fibres as determined by the 

expression of myosin and troponin (Fig. 5A, Supplementary Fig. 1). α-Actinin-3 is a 

component of the Z-disc normally present in fast myofibres and has been found to be 

important for muscle performance (strength and speed) (26, 27). Our results suggest that the 

restricted fibre-type expression profiles of α-actinin-2 and -3 is differently regulated to 

myosin, troponin and tropomyosin in patients with TPM3 mutations compared to age-

matched controls. 

 

Phosphorylation of tropomyosin is increased in patients with mutations in TPM3 

In normal skeletal muscle, a proportion of both α- and β-TPM is phosphorylated at residue 

S283 (28, 29)(Fig. 5Bi). The effect of tropomyosin phosphorylation in skeletal muscle is 

poorly understood, but studies suggest it is important for tropomyosin function by enhancing 

head-to-tail interactions and increasing the cooperative activation of myosin resulting in 

enhanced force production (30). We investigated whether phosphorylation at S283 was 

altered in TPM3 patients (as a possible contributor to muscle dysfunction) by Western blot 

Page 51 of 88 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

analysis using an anti-phosphor-S283 specific antibody (Fig. 5Bii shows a representative 

Western blot). Phosphorylation of tropomyosin (all three isoforms were analysed in 

combination) was increased in 6/8 of patients with samples available for analysis, compared 

to five age-matched controls (Fig. 5Biii). However, elevated levels of S283 phosphorylation 

were also observed in patients with mutations in TPM2, ACTA1, DNM2, DMD and DYSF 

(Fig. 5Biiii).  

 

Mutations in DMD (causing Duchenne and Becker muscular dystrophy) and DYSF (causing 

limb girdle muscular dystrophy type-2B) cause muscle fibre breakdown and regeneration. It 

is well documented that tropomyosin phosphorylation is higher during development in 

animals (29), and thus we explored whether increased phosphor-S283 in dystrophic muscle 

was related to fibre re-generation. Using IHC analysis, we established that phospho-S283 

tropomyosin levels did not correlate with fibre-type or with fibre re-generation in control or 

patient biopsies (Supplementary Fig. 2B-C). In TPM3 patients however, levels of phospho-

S283 tropomyosin were specifically elevated in small, slow-twitch myofibres (Supplementary 

Fig. 2A). This suggests that increased phosphorylation of tropomyosin is not specific to 

TPM3 disease, but may be a compensatory response to muscle dysfunction due to a variety of 

mechanisms. 

 

Slow myofibres of TPM3-myopathy patients have reduced maximal force, likely due 

to altered cross-bridge cycling 

In order to understand how muscle weakness develops in TPM3 patients we performed 

contractile studies on single, chemically-permeabilised patient myofibres or small fibre 

bundles by immersing them in Ca2+-containing solutions (see methods regarding details for 
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analysis of bundles). This induces activation of the contractile filaments allowing 

measurement of isometric force production. 

 

First, fibres and fibre bundles were activated at saturating [Ca2+] of pCa 4.5 (~31.6 µM) to 

induce maximal isometric contraction (Fmax, Fig. 6A). A small but significant force deficit 

was observed in slow myofibres and fibre bundles from seven of 10 TPM3-myopathy patients 

compared to pooled control samples (Fmax in all TPM3 patients ranges from 52.17 – 116 

mN/mm2 compared to 143.1±31.8 mN/mm2 in controls, *p<0.01 one-way ANOVA, Fig. 6C 

and D). This force deficit was present despite normalization to the smaller CSA in slow fibres 

of TPM3 patients. Fmax in type-2 fibres was not different from control fibres (106.7-186.7 

mN/mm2 in patient fibres and 147.7±29.34 mN/mm2 in control fibres) (Fig. 6B). In bundles, 

Fmax was lower in bundles with higher slow MHC content in two of three patients 

(Supplementary Fig. 3).  

 

During muscle contraction, a cyclic interaction between the myosin heads and thin filaments, 

followed by a conformational change in myosin, allows the filaments to slide past each other. 

Correct positioning of tropomyosin on actin filaments during the various stages of myosin-

actin interactions is crucial for efficient cross-bridge cycling. To determine if the force deficit 

in slow myofibres of TPM3 patients can be attributed to changes in cross-bridge cycling 

kinetics we measured the rate of tension re-development (Ktr) during maximal activation, 

after a short period of unloaded shortening following by re-stretch (a typical length and force 

trace are presented in Fig. 7Ai). The speed of cross-bridge cycling is physiologically faster in 

type-2 (fast-twitch) fibres compared to type-1 (slow-twitch) fibres (see controls in Fig. 7Aii-

iii). Slow fibres from eight of 10 TPM3 patient biopsies displayed a significant reduction in 

Ktr compared to controls (Ktr in all TPM3 patients ranges from 0.758-1.217 s-1 compared to 
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1.493±0.25 s-1 in controls, *** p<0.0001, * p<0.01, one-way ANOVA, Fig. 7Aii), whereas 

fast myofibres were not different from control myofibres (Fig. 7Aiii). These results suggest 

that myosin cross-bridge cycling kinetics are altered in slow fibres of TPM3 patients, 

contributing to muscle weakness by reducing the fraction of strongly bound cross-bridges 

during activation. 

 

Fmax is proportional to the force generated by a single strongly bound actin-myosin cross-

bridge and the fraction of myosin heads attached to actin. We assessed active stiffness in 

TPM3 biopsies, a measure proportional to the number of myosin heads strongly attached to 

actin during an isometric contraction (31), to study whether this contributes to muscle 

weakness. We measured active stiffness by performing fast length changes in isometrically 

contracted single myofibres (typical length/force traces are presented in Supplementary Fig. 4 

and a typical patient and control plot of the length change (∆L) versus force change (∆F) is 

presented in Fig. 7Bi and ii, respectively)(32). We observed a trend towards reduced absolute 

active stiffness in type-1 fibres and bundles/hybrid fibres of most TPM3 patients (Fig. 7Biii 

and iiii), which was not present in type-2 fibres (Fig. 7Bv). The change in active stiffness was 

proportional to Fmax, as the difference was not present when stiffness was normalised to 

Fmax (Fig. 7Bvi-viii). Since stiffness is proportional to the number of strongly attached 

myosin cross-bridges, a reduction of active stiffness proportional to force reduction suggests 

that forces per cross-bridge were normal, but, in line with the reduced Ktr, the number of 

strongly attached cross-bridges may be reduced in slow fibres of TPM3 patients, likely 

contributing to muscle weakness. 

 

Ca
2+

-sensitivity of contraction and maximal contractile force are decreased in 

patients with TPM3 mutations 
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Tropomyosin and the troponin complex are pivotal in regulating Ca2+-induced cross-bridge 

cycling during muscle contraction. We assessed the sensitivity to Ca2+ of permeabilised 

fibres, by bathing preparations in incrementally increasing [Ca2+] (pCa 6.2-4.5) and 

measuring the generated contractile force. In slow myofibres and fibre bundles/hybrid fibres 

of all patients, the force-pCa curves were shifted to the right compared to controls (Fig. 8Ai-

ii). As a result, the pCa50, representing the negative logarithm of the [Ca2+] at which 

preparations produce 50 % of their Fmax, was significantly reduced in type-1 fibres and 

bundles/hybrid fibres from all patients compared to controls (pCa50 type-1: 5.96±0.06 

controls, 5.69±0.04 patients; pCa50 bundles/hybrid:  5.99±0.09 controls, 5.67±0.05 patient, 

Fig. 8Bi-ii). This result indicates that more Ca2+ was required in patient biopsies than control 

biopsies to achieve the same relative force. In contrast, fast fibres from patients and controls 

showed normal Ca2+-activated force production (Fig. 8Aiii, Fig. 8Biii). 

 

Our data demonstrates that slow fibres and in bundles/hybrid fibres from patients with TPM3 

mutations produce on average ~ 63 % of the force produced by control fibres at saturating 

[Ca2+] (pCA 4.5). During a maximal contraction the intracellular [Ca2+] can rise from resting 

levels of ~0.1 µM (pCa 7) to ~10 µM (pCa 5) (33). However, myofibres in vivo rarely 

undergo maximal stimulation and mostly operate at sub-maximal levels, typically resulting in 

[Ca2+] of around 1-5 µM) in type-1 fibres (yellow area in Fig. 8A) (34-36). At these 

physiological Ca2+ levels (pCa 6.0), slow fibres and bundles/hybrid fibres from TPM3 

patients produce on average only 26 % of the force produced by control slow fibres and 

bundles/hybrid fibres (Fig. 8Ci-ii), whereas patient fast fibres produce forces similar to 

controls (Fig. 8Ciii). Thus, our results suggest reduced Ca2+-sensitivity is a significant basis 

for muscle weakness in TPM3-myopathy. 
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Ectopic α-actinin-3 expression in slow myofibres does not correlate with increased 

maximal force 

Four patients with TPM3 mutations at R168 displayed ectopic expression of α-actinin-3 in 

slow myofibres. Since α-actinin-3 expression is associated with increased muscle strength 

and speed (26, 27) we determined whether α-actinin-3 in slow fibres may influence 

contractile properties. We tested if α-actinin-3 expression was more commonly observed in 

fibres with higher Fmax in eight fibres from two patients. However, we found no correlation 

between ectopic α-actinin-3 and force production in these patient fibres (Supplementary Fig. 

5).  
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Discussion 

Mutations in TPM3 cause a range of histopathological patterns and are associated with 

generalised muscle weakness. To date, the cause of muscle dysfunction is not well 

understood in these patients, hindering the development of evidence-based treatments for 

TPM3-myopathies. Thus, we performed extensive phenotypical and functional 

characterization of a large cohort of TPM3-myopathy patients to understand the molecular 

mechanism(s) of their muscle weakness. 

 

The main histological feature of TPM3-myopathy patients in this cohort, and other published 

cohorts (1-3), was a selective hypotrophy of slow myofibres, while other histological features 

such as nemaline rods and caps were rarely present (four of 15 patients). The selective 

hypotrophy and contractile dysfunction of slow myofibres is consistent with the restricted 

slow-fibre expression of α-TPMslow, the main protein expressed from TPM3 in skeletal 

muscle. We confirmed the presence of mutant α-TPMslow in the filamentous fraction of 

patient skeletal muscle via 2D-SDS-PAGE for patients possessing a TPM3 mutation resulting 

in a charge change. In patients with protein aggregates (e.g. nemaline bodies), it has been 

uncertain whether mutant protein is actually incorporated into the sarcomere, or partitions 

into protein aggregates within the muscle fibre. In our study, protein aggregates were not 

observed in biopsies analysed by 2D-SDS-PAGE, suggesting that α-TPMslow mutant protein 

is likely incorporated into sarcomeres causing muscle weakness via a dominant negative 

effect on contractile function. Interestingly, the amount of α-TPMslow mutant protein did not 

correlate well with disease severity in our patient cohort. This may be explained by a number 

of factors influencing disease severity, such as a mutation-specific effect and varying proportions 

of slow fibres in different parts of the same muscle or different muscle groups. 
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Muscle contraction and force production rely on efficient interactions between tropomyosin 

polymers and major binding partners, the troponins and the actin filament, in response to 

Ca2+-influx. In this series of twelve muscle biopsies from TPM3-myopathy patients, we 

showed normal fibre-type expression of the major contractile proteins myosin, actin, troponin 

and tropomyosin. Furthermore, we confirmed normal ratios of the three skeletal muscle 

tropomyosin isoforms according to fibre-type composition for all patients. Our data suggest 

the higher relative abundance of α-TPMslow previously reported in a patient bearing a M9R 

substitution in TPM3 (25, 37) may be a specific property of this mutation, perhaps related to 

its position within the dimerisation domain. In a small number of patients, we observed 

ectopic expression of the fast fibre Z-disc protein α-actinin-3 in slow myofibres. The 

consequence of slow-fibre expression of the fast-fibre α-actinin-3 is not clear, and may relate 

to both metabolic and structural roles of α-actinin-3, though we excluded an overt effect on 

contractile force of single myofibres. Interestingly, similar ectopic expression of α-actinin-3 

was previously observed in some patients with ACTA1 mutations (38) and is thus not specific 

to TPM3-associated disease but could potentially be due to incomplete or abnormal fibre type 

conversion present in some myopathy patients. 

We investigated tropomyosin phosphorylation at residue S283 in our cohort. Tropomyosin 

phosphorylation has mainly been studied in the context of cardiac function (39-42) and to the 

best of our knowledge has not been investigated in skeletal myopathy patients. In vitro 

studies suggest phosphorylation strongly affects tropomyosin properties [e.g. stronger head-

to-tail interaction, enhanced troponin binding, higher myosin ATPase activity and long-range 

cooperative activation of myosin-thin filament binding (30, 43, 44)]. We showed 

tropomyosin phosphorylation was commonly increased in a wide range of genetic muscle 

disorders including TPM3-myopathy. However, the cause of this up-regulation and the effect 

on skeletal muscle contractility is unclear. The p38-MAPK (mitogene-activated protein 
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kinase) and ERK (extracellular signal-related kinase) signalling pathways are likely involved 

in tropomyosin phosphorylation of cardiac muscle and non-muscle cells, respectively (45-

47). In skeletal muscle, these pathways regulate exercise-induced adaptive responses on gene 

expression (reviewed in 48), suggesting tropomyosin phosphorylation may be involved in 

remodelling or adaptation to cellular stress.  

Most reported TPM3 substitutions lie within or near actin-binding domains, with several 

substitutions believed to influence direct electrostatic interactions with actin in the “off” state 

[when tropomyosin blocks myosin binding sites on the actin filament e.g. R91, R168, R245 

directly interact with actin D25 (49-51)]. Our data and previous studies have shown that 

many tropomyosin substitutions indeed affect binding to actin-filaments (52-55). Thus, 

altered actin-binding likely represents a common mechanism by which tropomyosin mutants 

alter sarcomeric function, perhaps related to the Ca2+-activated movement of tropomyosin 

between the “on” and “off” position during cross-bridge cycling (51, discussed in 56). 

 

Recent studies have attempted to predict the effect of mutations on actin-tropomyosin 

interactions and the resulting contractile abnormality, classifying them as “gain-of-function” 

changes (hyper-contractile phenotype, shift towards “on” state) and “loss-of-function” 

changes (hypo-contractile phenotype, stabilizing the “off” state) (50, 57, 58). Most mutations 

in our cohort are predicted to cause a “loss-of-function” (e.g. decreased Ca2+-sensitivity and a 

hypocontractile phenotype). The only exception is TPM3 K169E, predicted to favour the 

“on” position and enhance myosin-actin binding (50, 57)]. This phenotype was confirmed in 

reconstituted thin filaments in vitro (50). However, isolated slow myofibres and fibre bundles 

of all TPM3 patients (including Patient 1 carrying the K169E mutation), showed reduced 

Ca2+-sensitivity of contraction. Our data are consistent with the patient phenotype described 

in (1) and do not support the hyper-contractile phenotype of the K169E mutation present in in 
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vitro assessment of isolated filaments (50). This discrepancy may be explained by the greater 

complexity of single-fibre contractility studies, a setting that evaluates the combined 

contributions of actin, tropomyosin and troponin binding and regulatory proteins within a 

mature myofibre, which may also have undergone adaptive responses to disease. These may 

not be mirrored by in vitro actin motility studies or predictions via molecular modelling. 

Additional factors, such as interactions with other sarcomeric proteins like the troponin 

complex (59), may also contribute. Additionally, a recurrent mutation in TPM3, R168H, was 

found to reduce [current study and (21)] or increase Ca2+-sensitivity (20) in different patients 

with the same mutation. The cause for this patient to patient variability remains to be 

established. 

In our study, we identified two major abnormalities in contractile performance that we 

believe directly underpins weakness in TPM3-myopathy. Firstly, all patients exhibited 

reduced Ca2+-sensitivity of contraction in slow myofibres, likely resulting in a significant 

reduction in the contractile force generated at physiological, sub-maximal activation of 

muscle. Secondly, slow myofibres demonstrated a significant reduction in cross-bridge 

cycling kinetics and a small reduction in active stiffness (assesses the number of strongly 

bound myosin-actin cross-bridges) – meaning that myosin less effectively and less stably 

transits along actin filaments during contraction.  Collectively, these two abnormalities likely 

cause insufficient force production during a normal action potential resulting in slow fibre 

weakness. 

The selective dysfunction of slow myofibres in our cohort demonstrates the importance of 

assessing the two fibre types separately, and raises the question as to why fast myofibres are 

not able to compensate for dysfunctional slow myofibres. Inherent differences exist between 

the two fibre types. Slow myofibres are less fatigable than fast myofibres, probably due at 

least in part to larger numbers of mitochondria and a greater capacity for oxidative 
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metabolism (60, 61). Additionally, fast myofibres have a higher ATP consumption. Particular 

muscle groups, such as respiratory muscles, rely on slow fibres to produce sustained, low 

intensity contractions. Substantial weakness of respiratory muscles is common in TPM3 

patients, and effective treatments that specifically target slow muscle fibre dysfunction may 

ameliorate respiratory insufficiency. 

In summary, contractile function was commonly impaired in TPM3-myopathy patients. In 

particular, we showed reduced force generation caused by altered cross-bridge cycling 

kinetics and reduced Ca2+-sensitivity of muscle contraction. The identification of abnormal 

Ca2+-sensitivity suggests the use of Ca2+-sensitisers may present a viable therapeutic 

approach for TPM-related myopathies. To date, a number of agents are known to be effective 

at improving Ca2+-sensitivity in isolated skeletal myofibres from various species including 

bovine, human, mouse and rabbit (21, 62-65). Additionally, Ca2+-sensitisers were able to 

ameliorate muscle dysfunction in a rat model of myasthenia gravis (62) and isolated skeletal 

myofibres from congenital myopathy patients with mutations in TPM3, TPM2 and NEB (21, 

63). This therapeutic approach appears to be promising; however, most of these agents target 

the fast troponin isoforms and are unlikely to ameliorate slow fibre dysfunction. A Ca2+-

sensitiser acting on slow skeletal/cardiac troponin-C did not improve Ca2+-sensitivity in 

skeletal myofibres in a recent study, suggesting that new compounds targeting slow myofibre 

dysfunction have yet to be developed (66). Also, it appears that TPM2 and TPM3 mutations 

can either increase or decrease Ca2+-sensitivity in a patient and mutation-specific manner 

(overview in Supplementary Tab. 4), thus Ca2+-sensitisers will only be useful in a subset of 

patients. Patients with increased Ca2+-sensitivity display a hyper-contractile clinical 

phenotype (21, 54), suggesting treatment with Ca2+-sensitisers must be tightly regulated to 

ensure appropriate muscle function and avoid side effects. 
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Materials and Methods  

Study approval 

This study was approved by the human ethics committees of the Stollery Children’s Hospital, 

Edmonton, Canada (ID: 5856), Royal Children’s Hospital, Melbourne, Australia (ID: 

21102A), Children’s Hospital at Westmead, Sydney, Australia (ID: 2000/068, 10.CHW.45), 

University of Sydney, Australia (ID: 01/11/50) and Boston Children’s Hospital Institutional 

Review Board (03-08-128R). Informed consent was obtained from all individuals. 

Molecular modelling 

Molecular modelling was based on the 7 Ångstroms resolution crystal structure of an α-

TPMfast dimer isolated from adult porcine ventricles (RCSB Protein Data Bank 1C1G, 

Whitby and Phillips (23)). Molecular graphics were created with Swiss-PDB Viewer v4.1.0 

(67). 

 

Antibodies 

Mouse anti-sarcomeric actin (5C5, 1:100 for immunohistochemistry [IHC] and 1:10000 for 

Western blot), fast myosin [MY32, 1:800 for IHC, tropomyosin (TM311, 1:20,000 for 

Western blot and 1:800 for IHC), troponin-Tfast (TNNT3, 1:30 for IHC and 1:1000 for 

Western blot) were obtained from Sigma Aldrich. S283-phosphorylated tropomyosin was 

detected using the rabbit anti-Tm-pS283-050 (1:500 for Western blot and 1:30 for IHC, 21st 

Century Biochemicals) and slow myosin antibodies were obtained from Chemicon (1:800 for 

IHC and 1:7000 for Western blot). Polyclonal α-actinin-3 antibodies were produced in-house 

(antibody 5B3 diluted 1:50 for IHC and antibody 5A2 1:1500 for Western blot) (68). 

Troponin-Islow (MYNT-S, diluted 1:10 for IHC) and fast (MYNT-F, diluted 1:150) 

antibodies were kindly supplied by Takeshi Nakamura, Japan. Troponin-Tslow antibodies 

(CT3) were obtained from the Developmental Studies Hybridoma Bank, University of Iowa 
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(diluted 1:50 for IHC). Cardiac actin and neonatal myosin heavy chain (MHC) antibodies 

were obtained from American Research Products Inc, USA and Novocastra Laboratories Ltd, 

UK, respectively. 

 

IHC and Zenon labelling  

IHC was performed as described previously (69). Sections were either fixed as described in 

(37) (MYNT-S) or for 10 min in 3% PFA (MYNT-F, CT3 and TNNT3) or used unfixed 

(other antibodies). A Zenon mouse IgG labelling kit (Molecular Probes) was used to directly 

label primary antibodies with different fluorophores for co-staining with two mouse 

antibodies as per manufacturer’s instructions (either MHC type-2A and type-1 [Fig. 5] or 

neonatal MHC and cardiac actin [Supplementary Fig. 2C]). Staining was imaged using 

standard fluorescence microscopy. 

 

Fibre morphometry 

Fibre morphometry was performed on cryo-sections stained for myosin ATPase (70)] or 

following IHC for MHC isoforms. At least 200 fibres, visible in two distant fields of the same 

section were analysed using ImagePro Plus 4 software (Media Cybernetics). The greatest 

distance between opposite sides of the narrowest aspect, the MinFeret diameter, was 

measured to obtain the fibre diameter from a cross sectional cut. The percentage fibre-size 

disproportion (%FSD) was calculated as described in (1) and slow fibre area was calculated 

assuming circular shape of myofibres. 

 

Western blot and 2D-polyacrylamide gel electrophoresis (2D-SDS-PAGE) 

Western blot methods were based on (71) and tropomyosin isoforms were resolved as 

described in (54). Extraction of the filamentous protein pool from skeletal muscle sections 
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and 2D-SDS-PAGE to determine mutant tropomyosin expression were performed as 

described previously (14, 72). 

 

Protein sources and actin-tropomyosin co-sedimentation 

We employed site-directed mutagenesis to produce wild-type and mutant (R168C, K169E) α-

TPMslow baculoviruses to infect Sf9 insect cells using the baculovirus expression method as 

described previously (73, 74). 

Filamentous actin was prepared from actin-acetone powder isolated from rabbit muscle (75) 

and a 1 µM stock with 1 µM phalloidin and 0.1 mM ATP was used for experiments.  

All protein stocks were prepared in and dialyzed against a buffer containing 100 mM KCl, 50 

mM Imidazole, 8 mM MgCl2, 2 mM EDTA, 10 mM DTT and 0.5 mg/mL ultrapure bovine 

serum albumin (BSA, Sigma). Ten µM tropomyosin stocks were cleared of aggregates by 

ultracentrifugation at 603,180 x g (Sorvall M120-SE centrifuge, S100AT6-0199 rotor) for 20 

min at 4 °C. Ten nM actin were co-sedimented with incremental amounts of tropomyosin 

(50-1000 nM) in 1 mL reaction volume at 51,427 x g for 1.5 hr at 25 °C (Sorvall Evolution 

RC centrifuge, F20-Micro rotor) in siliconised polypropylene tubes. The pelleted fractions 

were solubilised in loading buffer and loaded on 4-15 % Criterion TGX gels (Biorad). 

Densitometry analysis on actin and tropomyosin bands was performed using GeneTools 4.0 

software (Synoptics Ltd). Values were corrected for sedimentation in the absence of actin and 

plotted as the ratio tropomyosin/actin vs. total [tropomyosin] added. Data were fitted to a Hill 

equation to determine the binding constant Kd and Hill’s coefficient h using GraphPad, Prism 

(Version 5.01). 

Contractile measurement of myofibres isolated from frozen human muscle biopsies 
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Small fractions of frozen muscle biopsies were thawed as described previously (63) in a 

solution containing 50 % glycerol and 50 % Ca2+-free relaxing-solution (100 mM BES, 6.97 

mM EGTA, 6.48 mM MgCl2, 6 mM Na2ATP, 1 mM DTT, 40.76 mM K-propionate, 14.5 mM 

creatine phosphate, 0.5 mM PMSF, 10 µM E64, 40 µM leupeptin, pH 7.1 and pCa 9 at 15 

°C). 

For contractile measurements, single fibres or small fibre bundles [~0.07 mm2 cross sectional 

area (CSA) and ~ 0.5 mm length] were dissected in glycerinating solution at 4 °C. Fibre 

bundles were prepared if the fibre CSA was too small for reliable force measurements. 

Aluminium T-clips were attached to both ends of the preparation followed by chemical 

skinning in glycerinating solution containing 1 % TritonX-100 for 10 min (single fibres) or 

30 min (bundles) at 4 °C. The preparations were then stored at 4 °C in glycerinating solution 

until mounting onto a permeabilised fibre apparatus between a length motor and a force 

transducer (ASI 802D, ASI 403A, ASI 315C-I, respectively, Aurora Scientific Inc., Canada) 

in relaxing-solution. All force measurements were performed at sarcomere lengths of 2.5 µm 

[optimal myofilament overlap, (76)] and at a temperature of 20 °C (bath temperature 

controller ASI 825A, Aurora Scientific). The sarcomere length was set and the CSA was 

measured as described in (63). 

 

Prior to [Ca2+]-induced activations preparations were pre-activated for 1 min in 100 mM 

BES, 0.1mM EGTA, 6.42 mM MgCl2, 6 mM Na2ATP, 41.14 mM K-propionate, 14.5 mM 

creatine phosphate, 6.9 mM HDTA (pH 7.1 and pCa 9 at 15 °C). Maximal isometric 

contraction (Fmax) was measured by bathing fibres in saturating [Ca2+] buffer (100 mM BES, 

7 mM CaEGTA, 6.28 mM MgCl2, 6 mM Na2ATP, 40.64 mM K-propionate, 14.5 mM 

creatine phosphate, pH 7.1 and pCa 4.5 at 15 °C) until a force plateau was achieved. The 

maximal specific force (Fmax at pCa 4.5 normalised to the CSA) is presented in this study. 
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Force/pCa curves and pCa 50 were measured as described in (20). The rate constant of 

tension re-development (Ktr) was measured by allowing the preparations to shorten to 70 % of 

the initial length for 30 ms followed by re-stretch to 100 % and fitting the data to a mono-

exponential function using Labview (National Instruments, USA) as described in (20). Active 

stiffness was measured immediately after the Ktr protocol as described previously (32, 77). In 

brief, we measured the force response (F1) to six 2 s length changes (∆L: +0.3 %, +0.6 %, 

+0.9 %, -0.3 %, -0.6 %, -0.9 %; Supplementary Fig. 4). ∆L was plotted against the force 

changes (∆F) and a linear regression was fitted to obtain the slope using Graph Pad, Prism 

(Version 5.01). 

 

The MHC content of measured fibres was determined as described previously (63) and the 

proportion of each MHC was determined by densitometry. Single myofibres/fibre bundles 

containing exclusively slow MHC (>90 % type-1), exclusively fast MHC (>90 % type-2A or 

2X) or a mixture of both (11–90 % type-1 or type-2A/2X) were grouped for analysis. The 

contractile properties of bundles and hybrid fibres containing a mix of type-1 and type-2A/2X 

MHC represent the average properties of both fibre types. The Ktr in bundles/hybrid fibres is 

highly variable due to the physiologically difference in type-1 or type-2A/2X fibres and was 

therefore not presented. Preparations were excluded from the analysis if the Fmax decreased 

>15 % during the protocol. Single myofibres from eight control biopsies (age 6-54 y) and 

bundles from two control biopsies (aged 0.6 and 6 y) were pooled for statistical analysis. 
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Legends to Figures 

Fig. 1: Dominant mutations in TPM3 affect amino acids located within or close to actin 

binding domains 

Tropomyosins form α-helical coiled-coil dimers via a seven residue repeat motive in their 

amino acid sequence [a-b-c-d-e-f-g] as illustrated in (A-B). Positions a and d (blue) are 

usually hydrophobic and create a hydrophobic pocket between two tropomyosin chains 

facilitating dimerisation in a “knobs-into-holes” fashion. Positions g and e (green) are 

occupied by charged amino acids that further stabilise the dimer through inter-helical salt 

bridges. Positions b, c and f (yellow) localise to the surface of the TM dimer and likely 

modulate interactions with protein binding partners such as actin and troponin. (C) A ribbon 

model of a whole tropomyosin dimer with the actin binding domains marked in pink on one 

strand. The residues affected by dominant mutations in TPM3 are shown. All affected 

residues are located in or close to actin binding domains. Eight mutations affect residues in 

the b, c or f positions of the repeat (yellow). Three mutations affect residues in the a and d 

position (blue) and two affect residues in the g and e position (green). RCSB Protein Data 

Bank access code for protein structure model is 1C1G [tropomyosin dimer, Whitby and 

Phillips (23)]. Swiss-PDB Viewer v4.1.0 was used to create molecular graphics (67).  

 

Fig. 2: TPM3-myopathy patients have slow fibre hypotrophy and a deregulation of slow 

and fast muscle fibre proportions 

(A) ATPase pH 4.6 stained muscle cross section of one control and four patients with 

mutations at residue R168, of α-TPMslow demonstrating a selective hypotrophy of slow type-1 

myofibres. Fast type-2 fibres are between 1.7 and 5.2 times larger in size than type-1 fibres, 

whereas age-matched controls (age between 0.8 -57 y) showed roughly equally sized fibres 

(B). This corresponds to a fibre-size disproportion (FSD) between 41 % and 78.3 % (C). 
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Patients with TPM3 mutations show an abnormal fibre type distribution ranging from 

complete type-1 fibre predominance (A: Patient 10) to type-2 fibre predominance (A: Patient 

8). (D) In the majority of control biopsies between 40-60 % of the CSA is composed of type-

1 fibres. TPM3-myopathy patients have either below 40 % or above 60 % type-1 fibre area. 

Fibre type measurements were performed twice at different times from the same biopsy in 

Patients 2, 3c, 6b and 8 (also see Supplementary Tab. 2) and the plotted values represent the 

average of both measurements. All images were taken at 100x magnification. Fibre size 

measurements and further information on patient and control biopsies are summarised in 

Supplementary Tab. 2. 

 

Fig. 3: Tropomyosin isoform ratios are not commonly altered and mutant α-TPMslow is 

expressed in TPM3-myopathy patient muscle 

(Ai) A representative Western blot of TPM3-myopathy patient and control muscle tissue 

showing the three skeletal muscle tropomyosin isoforms (β-TPM, α-TMfast and α-TPMslow). In 

normal muscle, type-1 fibres contain about 50:50 α-TPMslow/β-TPM and type-2 fibres contain 

about 50:50 α-TPMfast/β-TPM. Most sample had β-TPM and α-TPMfast/slow levels consistent 

with the relative proportion of type-1 and type-2 fibres present in the sample (% type-1 fibre 

area was determined from ATPase staining, see Supplementary Tab. 2). Only one patient 

(TPM3 M9R mutation, lane 5) had reduced β-TPM levels and increased expression of α-

TPMslow relative to other tropomyosin isoforms and the fibre type proportion in the biopsy as 

described previously (25). (Aii-iiii) Densitometry analysis of Western blots from 10 patients 

with mutations L100M (n=3), R168C (n=1), R168G (n=1), R168H (n=3), K169E (n=1), 

R245G (n=1) was performed to quantify the proportion of each tropomyosin isoform as a 

percentage of total TPM. The relative abundance of each isoform was plotted against the % 

type-1 fibre area (measurements from TPM3 M9R patient are not included). (Aii) β-TPM 
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levels are about 50 % of total tropomyosin in patients and controls. (Aiii-iiii) About 50 % of 

tropomyosin is α-TPMfast/slow, but the amount of these fibre-type specific isoforms correlates 

closely with the % type-1 fibre area in both patients and controls (positive correlation for α-

TPMslow, negative correlation for α-TPMfast). Linear regression analysis showed that slopes of 

patient and controls were not significantly different for any of the three isoforms (p=0.4997, 

0.9538 and 0.4595 for α-TPMslow, α-TPMfast and β-TPM, respectively). (B) Isoelectric 

focusing of patient and control muscle lysates shows three spots (corresponding to β-TPM, α-

TPMfast, α-TPMslow). An additional spot (marked by an arrow) consistent with the predicted 

isoelectric point (pI) of each mutation (as annotated, wild-type α-TPMslow is 4.69) is present 

in patient biopsies. Mutant α-TPMslow accounted for 27-45% of total α-TPMslow in different 

patient biopsies (annotated in the blot, the proportion of each tropomyosin in patient slow 

fibres is given in Supplementary Tab. 3). Note the ratio of expression of α-TPMfast/slow 

depends on the percentage of slow and fast myofibres in the biopsy (e.g. Patient 8 (R168C) 

mainly contains fast myofibres). Picture 3 from the left in (B) is reprinted from Neuromuscul 

Disord, 20/7 Waddell et al., Evidence for a dominant negative disease mechanism in cap 

myopathy due to TPM3, 464-466, Copyright (2010), with permission from Elsevier. 

 

Fig. 4: Mutant α-TPMslow R168C proteins has a reduced affinity to filamentous actin 

Phalloidin stabilised actin filaments were co-sedimented with incremental amounts of 

tropomyosin and the pelleted fractions were analysed by SDS-PAGE. (A) A representative 

SDS-PAGE of wild-type α-TPMslow protein as was used for densitometry analysis. (B) The 

ratio of TPM/actin was plotted vs. total [TPM] added and a Hill’s equation was fitted. The Kd 

was increased in α-TPMslow R168C compared to α-TPMslow wild-type and K169E suggesting 

weaker binding affinity to actin (771.4±188.6 nM, 180.2±37.6 nM, 164.0±110.6 nM for α-

TPMslow R168C, wild-type and K169E, respectively). The Hill’s coefficient h and maximal 
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binding (Bmax) was similar in all three proteins (h = wild-type 4.471±3.0, R168C 3.308±2.4, 

K169E 1.602±1.3; Bmax wild-type 0.489±0.055, R168C 0.431±0.078 and K169E 

0.443±0.156). Values are best-fit values ± 95% confidence interval. 

 

Fig. 5: TPM3 patients show increased phosphorylation of tropomyosin and ectopic 

expression of fast fibre specific α-actinin-3 in slow myofibres 

(A) Consecutive sections were labelled with type-1 and type-2a MHC (blue and green, co-

labelled respectively), type-2 MHC (red), α-actinin-3 (green) and troponin-Tfast (green) (the 

same fibre in multiple stains is indicated by a white arrow). Troponin-Tfast is only expressed 

in fast fibres as expected. Abnormal expression of α-actinin-3, a fast fibre specific Z-disc 

protein, was observed in type-1 myofibres of Patients 10, 4 and 6a (yellow stars). The biopsy 

of Patient 6b showed similar abnormalities but is not shown in this panel. Other patients had 

normal expression of α-actinin-3. Staining of Patient 1 and 8 are representative for these 

patients. (Bi) S283 is conserved and can be phosphorylated in all three sarcomeric 

tropomyosin proteins. (Bii) We assessed the level of S283 phosphorylation (pTPM) and total 

tropomyosin protein levels by duplicate Western blot and equal loading was confirmed by 

using sarcomeric actin (s Actin) (representative Western blot shown). The phosphorylation 

status of all three tropomyosin isoforms was determined by densitometry and normalised to 

the total tropomyosin levels. The graph shows phosphorylation levels normalised to the 

control average in (Biii) TPM3 patients and (Biiii) patients with congenital myopathies and 

muscular dystrophies due to mutations in TPM3, TPM2, ACTA1, DNM2, DMD and DYSF. 

Horizontal lines and error bars represent mean and standard deviation. Phosphorylation was 

commonly increased in both TPM3 patients and patients with other genetic causes of muscle 

disease. Statistical analysis was only performed on patients with the R168H mutation due to 
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insufficient data points for other groups. Phosphorylation was significantly higher in patients 

with the R168H mutation compared to controls (*p<0.05, Mann-Whitney U test).  

 

Fig. 6: The force generation at saturating [Ca
2+

] is decreased in TPM3-myopathy 

patients 

Maximal force generation (Fmax) measured at pCa 4.5 and sarcomere length of 2.5 µm, 

normalised to fibre CSA. (A) A typical force trace from a patient (Patient 6) and control type-

1 fibre. Most TPM3 patients showed a significant force deficit in type-1 myofibres (C) 

whereas type-2 fibres produced similar maximal force compared to controls (B). In hybrid 

fibres and fibre bundles all patients had a slightly lower force average, however only Patient 

1 showed a significant force deficit (D). Cslow = Control type-1 fibres (pooled from eight 

biopsies aged: 11-54 y), Cfast = Control type-2 fibres (pooled from eight biopsies aged: 6-54 

y), Ch/b= Control hybrid fibres (contain a mix of type-1 and type-2 MHC, age 11-54 y) and 

small fibre bundles (bundles were taken from two biopsies of 0.9 y and 6 y old controls). P = 

Patient. The black line in (B-D) indicates the average. *** p<0.0001, * p<0.01, one-way 

ANOVA. 

 

Fig. 7: The force deficit in TPM3-myopathy patients is likely due to abnormal cross-

bridge cycling 

We assessed the rate of tension re-development (Ktr) (A)) and active stiffness (B) in TPM3-

myopathy patients to investigate if the force deficit in patient type-1 fibres was due to altered 

cross-bridge cycling. A typical Ktr trace of a patient (Patient 6) and a control are shown in 

(Ai). The Ktr in single myofibres from TPM3 patient biopsies and control biopsies are shown 

in (Aii) (type-1) and (Aiii) (type-2). Note that due to different MHC-ATPase properties the 

Ktr is physiologically higher in type-2 than in type-1 fibres. (Aii) The type-1 fibres of most 
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TPM3 patients showed a significant decrease in Ktr compared to control type-1 fibres 

(exceptions: Patient 1, 2 and 3a (*** p<0.0001, * p<0.01, one-way ANOVA) (Aiii) The type-

2 fibres were not different to control type-2 fibres, with the exception of Patient 6 which 

showed a small decrease in Ktr. (B) Active stiffness was analysed by plotting the length 

changes (∆L) against the force changes (∆F) and fitting a linear regression to the data. A 

representative graph of type-1 fibres from Patient 4 and from controls is shown in (Bi: 

absolute length change) and (Bii: length change/Fmax). Graphs from other all other samples 

are presented in Supplementary Fig. 6. Error bars represent standard deviation. (Biii-v) The 

slope of the linear regression was not significantly different from controls in all fibre-types in 

most patients with the exception of type-1 fibres or bundles/hybrid fibres of Patient 1, 2 and 7 

where stiffness was reduced (*p<0.01 ,**p<0.001 ,*** p <0.0001, one-way ANOVA). 

However, a trend towards a small reduction was present in type-1 fibres and bundles/hybrid 

fibres of most patients (Biii-iiii). (vi-vii) When ∆F was normalised to Fmax the slope was not 

significantly different from controls with the exception of P3c, which showed an increase in 

the slope (I, *** p <0.0001, one-way ANOVA). Error bars represent standard deviation. Cslow 

and Cfast = Control type-1 and type-2 fibres (pooled from eight biopsies aged: 11 - 54 y), Ch/b 

= Control hybrid fibres (contain a mix of type-1 and type-2 MHC, age 6 - 54 y) and small 

fibre bundles (bundles were taken from two biopsies of 0.9 y and 6 y old controls). The black 

line in all scatter plots indicates the average. 

 

Fig. 8: Ca
2+

-sensitivity is decreased in TPM3-myopathy patients resulting in reduced 

specific force generation at physiological [Ca
2+

] 

(A) Specific force generation at incremental [Ca2+] in skinned type-1 fibres (i), hybrid fibres 

or bundles (ii) and type-2 fibres (C) shown as percent of Fmax fitted to a variable slope log 

(dose) response curve. Note the rightward shift of the force/pCa curve in type-1 fibres, hybrid 
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fibres/bundles in TPM3 patients, whereas type-2 fibres were not different to controls. The 

dotted lines indicate the pCa50 ([Ca2+] required to achieve 50 % of maximal force) and the 

yellow area indicates physiological cytoplasmic [Ca2+] during muscle contraction (between 1 

- 5 µM) (B) The pCa 50 was significantly higher in type-1 fibres, hybrid fibres/ bundles of 

TPM3 patients compared to controls and type-2 fibres of TPM3 patients. (C) Specific force 

generation measured at pCa 6.0 (1 µM, physiological calcium). The force was significantly 

lower in (i) type-1 fibres and (ii) hybrid fibres/bundles of all TPM3 patients, but was not 

different from controls in (iii) type-2 fibres. Cslow and Cfast = Control type-1 and type-2 fibres 

(pooled from eight biopsies aged: 11-54 y), Ch/b = Control hybrid fibres (contain a mix of 

type-1 and type-2 MHC, age 6-54 y) and small fibre bundles (bundles were taken from two 

biopsies of 0.9 y and 6 y old controls). The black line in the scatter plot indicates the average 

and error bars in force/pCa curves are standard deviations. *** p<0.0001, * p<0.01, one-way 

ANOVA. P=Patient, C= control. 

 

Tables 

Table 1: Patient cohort with dominant TPM3 mutations 

P Mutation 

in TPM3 

Disease Muscle 

type 

Sex Age at 

biopsy 

Clinical 

classification 

Publication Contractile 

studies 

1 K169E CFTD Q M 16 m moderate (1): P 2 Y 

2 R245G CFTD Q M 20 m moderate (1): P 1 Y 

3a L100M CFTD Q F 3 y mild (1): P 5 Y 

3b L100M CFTD B M 30 y mild (1): P 7 Y 

3c L100M CFTD B M 36 y mild (1): P 8 Y 

4 R168G CFTD Q M 10 y mild (1): P 3 Y 

5 R168H  CFTD Q F 40 y mild unpublished Y 

6a R168H NM D F 20 y mild (1): P 10 N 
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6b R168H  CFTD ? M 56 y mild (1): P 11 Y 

7 R168C Cap ? M 3 y mild (14): P 1 Y 

8 R168C CFTD Q F 19 y moderate (1): P 9 Y 

9 M9R NM Q F 21 y mild (8); (37): P 1 N 

10 R168H NM D M 53 y mild (13): P III-4 N 

11 E241K CFTD Q F 0.5y moderate (2): P 311-1 N 

12 R91P CFTD Q F 0.5y severe (2): P 913-1 N 

Q=Quadriceps, B = Biceps, D = Deltoid, P = Patient 

 

Abbreviations 

α-tropomyosinslow      α-TPMslow 

α-tropomyosinfast      α-TPMfast 

bovine serum albumin      BSA 

β-tropomyosin       β-TPM 

congenital fibre-type disproportion    CFTD 

cross sectional area      CSA 

immunohistochemistry     IHC 

−log of molar free [Ca2+]     pCa 

maximal isometric contraction     Fmax 

myosin heavy chain      MHC 

percentage fibre-size disproportion     % FSD 

phosphate buffered saline      PBS 

two-dimensional SDS polyacrylamide gel electrophoresis 2D-SDS-PAGE 
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Fax: +61 2 9845 3489 

Email: michaela.kreissl@sydney.edu.au 

 

20 July 2015 

 

 

Dear Editor, 

 

 

Re: Manuscript number: HMG-2015-W-00595: Yuen et al., ‘Muscle weakness in TPM3-myopathy is due to reduced Ca
2+

-

sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres.’ 

 

Thank you for the timely review of our manuscript.  Below I have addressed your queries and those of the reviewer’s 

below.  

 

Kind regards,  

 

Michaela Yuen  
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1. FORMATTING ERRORS 

 

I have corrected the following formatting errors: 

 

TITLE PAGE 

The corresponding author was designated with an asterisk (*) and address, telephone, FAX, and email address were listed. 

 

MANUSCRIPT 

TIMES NEW ROMAN font was used for all text and text was double-spaced. 

 

REFERENCES 

References were edited to comply with the Human Molecular Genetics format (specifically, all abbreviated words in journal 

titles were punctuated, i.e. Hum. Mol. Genet. NOT Hum Mol Genet.) 

 

 

2. REVIEWERS' COMMENTS 

 

Reviewer: 1 
 

Question 1: I am intrigued by the mutant/wt expression data.  I would have predicted (a) that mutant protein is produced 

and (b) that its levels would correspond to phenotype.  The latter point does not seem to come out in the experimentation, 

as the samples with the most severe clinical phenotype have the lowest mutant protein levels. (c) Were the overall levels 

of TPM3 reduced in those samples?   

 

Redress  to 1(a) and (b): Yes, one might reasonably expect mutant protein levels to correlate with clinical disease severity. 

However, many additional factors likely determine the overall weakness observed in a TPM3-myopathy patient. 

 

For instance, TPM3 is specifically expressed in slow muscle fibres. The area occupied by slow fibres and thus the number of 

fibres expressing the mutant protein may vary in different parts of each patients biopsy (see Table 1 below) and in different 

muscles in the same patient (Ilkovski et al, 2008). Thus in addition to taking into account the amount of mutant protein, one 

has to consider the number of slow fibres in the affected muscle groups to correlate clinical severity with the presence of 

mutant protein. This is further complicated by the specific defects exerted by each mutation.  

 

Interestingly, a shift towards slow fibre predominance is commonly observed in our cohort and in other congenital 

myopathies. This would result in more fibres expressing mutant protein, however, high numbers of slow fibres did not 

correlate with more severe disease (see Table 1). On the contrary, more severely affected patients were among the patients 

with the lowest slow fibre area (marked in yellow in Table 1). We believe this suggests fast fibre predominance is unable to 

compensate for slow fibre dysfunction and may confer a more severe presentation. 

  

We inserted the following comment in the manuscript to address this question (paragraph 2 of the discussion): 

“Interestingly, the amount of α-TPMslow mutant protein did not correlate well with disease severity in our patient cohort. 

This may be explained by a number of factors influencing disease severity, such as a mutation-specific effect and varying 

proportions of slow fibres in different parts of the same muscle or different muscle groups.” 

 

Redress to 1(c): Concerning potentially reduced levels of α-TPMslow: We observed a strict correlation of α-TPMslow  relative to 

slow fibre cross sectional area in our entire cohort, with the exception of patient 12 where poor muscle quality did not allow 

fibre typing of the muscle.  

 

 

Question (2): Is there any way to examine the ratio of WT/mut in the remaining samples?  Perhaps by proteomics?   

 

Redress to (2): We agree, knowing mutant and wild type protein ratios for the remaining samples would be useful but 

technical limitations of mass spectrometry (MS) preclude these studies.  We determined the mutant/wild type ratio in all 

samples that expressed α-TPMslow (presence of sufficient number of slow fibres) and resulted in a charge change as required 

for separation from wild type protein via 2D-PAGE (see Table 1). We inquired in our proteomics facility about the use of 

mass spectrometry for analysis of mutations without a charge change, but were advised tropomyosin presents a poor 

candidate for MS due to the abundance of trypsin sites.  But also, there is no guarantee (for any protein) that the particular 

subset of fragments ionized and detected by MS will include a fragment bearing a missense mutation of interest. Therefore, 

we were unable to pursue any missense mutations without a charge change. 
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Table 1: Mutant α-TPMslow expression and slow fibre area do not correlate with clinical severity 

P Mutation in 

TPM3 

Age at 

biopsy 

Clinical 

classification 

IEF result Type 1 fiber area* 

1 K169E 16 m moderate 38% mutant 23.3 

2 R245G 20 m moderate no/very low levels of TPM3 

due to fiber typing (6.4% type 

1 fiber area in biopsy 

available) 

20.5 

6.4 

3a L100M 3 y mild no charge change 61.8 

3b L100M 30 y mild no charge change 73.4 

3c L100M 36 y mild no charge change 37.3  

25.9 

4 R168G 10 y mild 39% mutant 74.6 

5 R168H  40 y mild no charge change N/D 

6a R168H 20 y mild no charge change 62.8 

6b R168H  56 y mild no charge change 16.3  

39.6 

7 R168C 3 y mild published in Waddell et al 

2010 ~50% mutant 

100 

8 R168C 19 y moderate 37% mutant 13.7  

5.1 

9 M9R 21 y mild published in Ilkovski et al 

2008 ~50% mutant 

N/D 

10 R168H 53 y mild no charge change 100 

11 E241K 0.5y moderate 90% mutant 27.9 

12 R91P 0.5y severe 23% mutant N/D due to insufficient 

sample quality 

*two values are stated for a patient when fibre typing was performed twice, at different times and on different parts of the 

biopsy 
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Question (3): Can one evaluate the amount of mut/WT protein in the non filamentous fractions?  Perhaps much of the 

mutant protein is not being incorporated. 

 

Redress to (3): This is a good suggestion. Unfortunately, we did not determine mutant/wild type levels in the soluble 

fraction at the time these experiments were performed and due to limited amount of biopsy material we are unable to 

perform these experiments retrospectively. We sincerely hope this will not detract from the overall quality of the paper. 

 

 

Question (4): In terms of the actin co-sedimentation assay, given that this is a dominant disease and that the mutant and 

WT proteins co-exist, it seems like the most accurate way to do this experiment would be to look at the data using 

equimolar (and skewed) ratios of WT/mut and then measuring actin co-sedimentation.  It is known for some other 

dominant diseases that the effect of mut protein can be quite different when all polymers are composed of mutant protein 

vs combo polymers of WT/mut proteins. 

 

Redress to (4): Actin-TPM co-sedimentation assays are a useful tool in evaluating the interaction of actin and mutant TPM 

in an isolated system and can provide important insights into specific actin-binding defects. Mutant α-TPMslow, wild type α-

TPMslow and wild type β-TPM protein indeed co-exist in skeletal muscle (predicted ratios are presented in supplementary 

table 3) where they interact with a range of other proteins to form the thin filament. Rather than exhaustively study 

different ratios of the tropomyosins, which in itself also present technical caveats due to an absence of troponins and other 

thin filament proteins specific to slow fibres, we chose to instead pursue single fibre contractility testing.  In this setting, the 

exact ratio of tropomyosin isoforms present in the patient fibres are studied in the setting of an intact contractile 

apparatus.  We felt this was a better approach to study how the mutant α-TPMslow impacted the contractile properties in 

the muscle fibres of affected patients.  

 

 

Minor comment (1): Have similar studies been performed for TPM2?  Do they provide any parallel insight or corroboration 

with the current data?  

 

Redress to minor comment (1): To our knowledge, no study has been performed for a large cohort of TPM2 patients 

studied collectively by one group using the same methodology. However, contractile mechanics have previously been 

assessed in TPM2 patients in a number of smaller studies yielding variable results: 

• TPM2 null and TPM2 E181K (Ochala et al, 2012): normal specific force in TPM2 null and E181K. TPM2 null showed 

decreased calcium sensitivity and normal Ktr while TPM2 E181K showed increased calcium sensitivity and reduced 

Ktr 

• TPM2 K7del (Mokbel et al, 2013): normal specific force, increased calcium sensitivity, reduced actin affinity. 

• TPM2 E41K (Ochala et al, 2008): normal specific force, lower Ktr and lower calcium sensitiviy 

• TPM2 R133W (Ochala et al, 2007): found lower specific force and lower Ktr but no difference in calcium sensitivity 

 

Based on these studies the contractile phenotype of TPM2-myopathy related mutations appears variable and is likely 

mutation specific. This is paralleled by TPM2 causing muscle weakness in some patients and a hypercontractile phenotype 

in others (Mokbel et al, 2013). In contrast, TPM3 has been associated only with muscle weakness to date and we observed a 

consistent reduction of force, Ktr and calcium sensitivity in our TPM3 cohort. I believe further studies of larger cohorts with 

all patients subject to the same testing regimes are needed to confirm if reduced Ca
2+

-sensitivity is a unifying feature of all 

TPM3 mutations, as this may be amenable to targeted therapy.  However, we concede it remains plausible and possible 

that specific mutations may either sensitise or desensitise the thin filament to Ca
2+

, or affect other thin filament properties 

that may similarly manifest as weakness in patients.  

 

 

Minor comment (2): Have the authors looks at α-actinin-3 expression in other forms of NM?  Is this a specific or non-

specific observation. 

 

Redress to minor comment (2): Our group has previously observed ectopic α-actinin-3 expression in ACTA1 nemaline 

myopathy patients. This finding has been published in (Ilkovski et al, 2001).  Patients with ACTA1 mutations I357L, G268C, 

and I136M had 90 %–100 % slow fibre predominance and abnormal expression of α-actinin-3 in a subset of slow fibres 

and/or fibres expressing both slow- and fast-myosin heavy chain. Below is a small panel showing ectopic a-actinin 3 

expression in a patient with an ACTA1 I136M mutation (Figure 1). Ectopic expression of α-actinin-3 is therefore not specific 

to disease caused by α-TPMslow mutations. Please note due to loss of α-actinin-3 resulting from a homozygous null mutation 

in 20 % of normal individuals (North et al, 1999) α-actinin-3 expression cannot be studied in all patients. 
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We added the following comment to paragraph 3 of the discussion in the manuscript: 

“Interestingly, similar ectopic expression of α-actinin-3 was previously observed in some patients with ACTA1 mutations 

(Ilkovski et al, 2001) and is thus not specific to TPM3-associated disease but could potentially be due to incomplete or 

abnormal fibre type conversion present in some myopathy patients.” 

 

 
Figure 1: Ectopic expression of fast fibre specific α-actinin-3 in slow fibres in a patient with the ACTA1 I136M mutation 

Consecutive muscle section stained with slow and fast myosin heavy chain (sMHC and fMHC, respectively) and α-actinin-3 

showing ectopic expression of α-actinin-3 in sMHC positive fibres (blue arrow). 

 

 

Minor comment (3): What do the authors make of their data vis-a-vis a strong contracture phenotype?  One hypothesis 

about this has been some element of hypercontractility exists (at least for TPM2).  Do you feel your data now "puts to rest" 

the idea that some TPM3 mutations are associated with hypercontraction?  And how does this compare to TPM2, where 

data (I believe from the authors group) has shown some mutations (TPM2del7K) do in fact cause hypercontractility under 

certain circumstances. 

 

Redress to minor comment (3): We believe our data conclusively shows that none of the mutations we investigated cause a 

hypercontractile phenotype. This topic is thoroughly discussed in the 6th paragraph of the discussion. A hypercontractile 

phenotype has been associated with the TPM2 K7del mutation (Mokbel et al, 2013) and it is likely that the effect on thin 

filament activation is highly dependent on the nature of the amino acid substitution, so mutation to mutation variability is 

expected. 

 

 

Reviewer: 2 
 

Comment (1): Please consider adapting or cross-referencing the new tropomyosin nomenclature. 

 

Redress to comment (1): We support adapting a universal nomenclature in order to allow clear distinction between the 

large number of tropomyosin proteins, so we cross referenced to the new nomenclature in the second paragraph of the 

introduction and have now also added a citation (Geeves et al, 2015). However, we believe for skeletal muscle the old 

nomenclature better reflects the expression patterns and properties of the three skeletal muscle tropomyosin isoforms and 

is thus easier to follow. We would prefer to maintain the old nomenclature for this manuscript but hope that cross-

referencing the new nomenclature at the start provides sufficient clarity. 

 

 

Comment (2): Was there any emerging correlation between the in vitro force measurements and the relative severities of 

the clinical phenotype? 

 

Redress to comment (2): Two out of three patients rated to have a moderate clinical presentation displayed the lowest 

specific forces measured in our cohort so there appears to be a correlation (see Table 2). However, unfortunately our cohort 

is not large enough to draw scientifically valid conclusions. Additionally, other factors may influence clinical severity as 

discussed above (Question 1, Reviewer 1) such as fibre typing in various muscle groups and slow fibre atrophy (e.g. smaller 

slow fibres will produce less force than bigger slow fibres; our force measurements do not reflect this as we normalise to 

cross sectional area). 

 

 

Comment (3): Was there any evidence that the state of S283 phosphorylation affected the measurements (I may have 

missed that)? 

 

Redress to comment (3): Phosphorylation at S283 is physiologically higher during development and decreases drastically in 

the first years of life (data not shown). Thus we were unable to interpret phosphorylation in young patients due to high 
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variability among patients and controls (N/D in Table 2). Most adult patients have a mild clinical phenotype. Low 

phosphorylation was detected in two patients, one was classified as mild and the other as moderate suggesting there is no 

correlation with clinical severity. As the cohort is not big enough to draw scientifically valid conclusions, and given 

phosphorylation at S283 is also altered and elevated in other forms of muscle disease, we do not think these data should be 

discussed further within manuscript. 

 

 

 

Table 2: Correlate clinical severity with contractile force and phosphorylation 

P Mutation in 

TPM3 

Age at 

biopsy 

Clinical 

classification 

Average force in slow 

fibres (mN/mm3 

S283 p 

1 K169E 16 m moderate 77.24±12.48 (type 1, n=2) 

52.17±13.74 (h/b, n=8) 

N/D 

2 R245G 20 m moderate 79.51±8.345 (type 1, n=2) 

105.5±25.16 (hybrid, n=6) 

N/D 

3a L100M 3 y mild 116.0±43 (type 1, n=9) N/D 

3b L100M 30 y mild 82.27±35.31 (type 1, n=16) +++ 

3c L100M 36 y mild 98.6±36.56 (type 1, n=15) +++ 

4 R168G 10 y mild 87.83±21.1 (type 1, n=12) N/D 

5 R168H  40 y mild 100.6±27.00 (type 1, n=14) N/D 

6a R168H 20 y mild N/D +++ 

6b R168H  56 y mild 105.8±49.51 (type 1, n=17) ++ 

7 R168C 3 y mild 89.37±27.18 (type 1, n=15) N/D 

8 R168C 19 y moderate 96.48±27.61 (type 1, n=4) + 

9 M9R 21 y mild N/D + 

10 R168H 53 y mild N/D ++ 

11 E241K 0.5y moderate N/D N/D 

12 R91P 0.5y severe N/D N/D 
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