3,578 research outputs found
Classical capacity of the lossy bosonic channel: the exact solution
The classical capacity of the lossy bosonic channel is calculated exactly. It
is shown that its Holevo information is not superadditive, and that a
coherent-state encoding achieves capacity. The capacity of far-field,
free-space optical communications is given as an example.Comment: 4 pages, 2 figures (revised version
Multi-Dimensional Hermite Polynomials in Quantum Optics
We study a class of optical circuits with vacuum input states consisting of
Gaussian sources without coherent displacements such as down-converters and
squeezers, together with detectors and passive interferometry (beam-splitters,
polarisation rotations, phase-shifters etc.). We show that the outgoing state
leaving the optical circuit can be expressed in terms of so-called
multi-dimensional Hermite polynomials and give their recursion and
orthogonality relations. We show how quantum teleportation of photon
polarisation can be modelled using this description.Comment: 10 pages, submitted to J. Phys. A, removed spurious fil
Measuring the quantum statistics of an atom laser beam
We propose and analyse a scheme for measuring the quadrature statistics of an
atom laser beam using extant optical homodyning and Raman atom laser
techniques. Reversal of the normal Raman atom laser outcoupling scheme is used
to map the quantum statistics of an incoupled beam to an optical probe beam. A
multimode model of the spatial propagation dynamics shows that the Raman
incoupler gives a clear signal of de Broglie wave quadrature squeezing for both
pulsed and continuous inputs. Finally, we show that experimental realisations
of the scheme may be tested with existing methods via measurements of Glauber's
intensity correlation function.Comment: 4 pages, 3 figure
Unified Treatment of Heterodyne Detection: the Shapiro-Wagner and Caves Frameworks
A comparative study is performed on two heterodyne systems of photon
detectors expressed in terms of a signal annihilation operator and an image
band creation operator called Shapiro-Wagner and Caves' frame, respectively.
This approach is based on the introduction of a convenient operator
which allows a unified formulation of both cases. For the Shapiro-Wagner
scheme, where , quantum phase and amplitude
are exactly defined in the context of relative number state (RNS)
representation, while a procedure is devised to handle suitably and in a
consistent way Caves' framework, characterized by , within the approximate simultaneous measurements of
noncommuting variables. In such a case RNS phase and amplitude make sense only
approximately.Comment: 25 pages. Just very minor editorial cosmetic change
Minimum output entropy of bosonic channels: a conjecture
The von Neumann entropy at the output of a bosonic channel with thermal noise
is analyzed. Coherent-state inputs are conjectured to minimize this output
entropy. Physical and mathematical evidence in support of the conjecture is
provided. A stronger conjecture--that output states resulting from
coherent-state inputs majorize the output states from other inputs--is also
discussed.Comment: 15 pages, 12 figure
Quantum Noise Randomized Ciphers
We review the notion of a classical random cipher and its advantages. We
sharpen the usual description of random ciphers to a particular mathematical
characterization suggested by the salient feature responsible for their
increased security. We describe a concrete system known as AlphaEta and show
that it is equivalent to a random cipher in which the required randomization is
effected by coherent-state quantum noise. We describe the currently known
security features of AlphaEta and similar systems, including lower bounds on
the unicity distances against ciphertext-only and known-plaintext attacks. We
show how AlphaEta used in conjunction with any standard stream cipher such as
AES (Advanced Encryption Standard) provides an additional, qualitatively
different layer of security from physical encryption against known-plaintext
attacks on the key. We refute some claims in the literature that AlphaEta is
equivalent to a non-random stream cipher.Comment: Accepted for publication in Phys. Rev. A; Discussion augmented and
re-organized; Section 5 contains a detailed response to 'T. Nishioka, T.
Hasegawa, H. Ishizuka, K. Imafuku, H. Imai: Phys. Lett. A 327 (2004) 28-32
/quant-ph/0310168' & 'T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H.
Imai: Phys. Lett. A 346 (2005) 7
Polariton-assisted Singlet Fission in Acene Aggregates
Singlet fission is an important candidate to increase energy conversion
efficiency in organic photovoltaics by providing a pathway to increase the
quantum yield of excitons per photon absorbed in select materials. We
investigate the dependence of exciton quantum yield for acenes in the strong
light-matter interaction (polariton) regime, where the materials are embedded
in optical microcavities. Starting from an open-quantum-systems approach, we
build a kinetic model for time-evolution of species of interest in the presence
of quenchers and show that polaritons can decrease or increase exciton quantum
yields compared to the cavity-free case. In particular, we find that hexacene,
a typically poor singlet-fission candidate, can feature a higher yield than
cavity-free pentacene when assisted by polaritonic effects. Similarly, we show
that pentacene yield can be increased when assisted by polariton states.
Finally, we address how various relaxation processes between bright and dark
states in lossy microcavities affect polariton photochemistry. Our results also
provide insights on how to choose microcavities to enhance similarly related
chemical processes.Comment: 12 pages, 4 figure
Circuit analysis of quantum measurement
We develop a circuit theory that enables us to analyze quantum measurements
on a two-level system and on a continuous-variable system on an equal footing.
As a measurement scheme applicable to both systems, we discuss a swapping state
measurement which exchanges quantum states between the system and the measuring
apparatus before the apparatus meter is read out. This swapping state
measurement has an advantage in gravitational-wave detection over contractive
state measurement in that the postmeasurement state of the system can be set to
a prescribed one, regardless of the outcome of the measurement.Comment: 11pages, 7figure
Continuous variable cloning via network of parametric gates
We propose an experimental scheme for the cloning machine of continuous
quantum variables through a network of parametric amplifiers working as
input-output four-port gates.Comment: 4 pages, 2 figures. To appear on Phys. Rev. Let
Novel cloning machine with supplementary information
Probabilistic cloning was first proposed by Duan and Guo. Then Pati
established a novel cloning machine (NCM) for copying superposition of multiple
clones simultaneously. In this paper, we deal with the novel cloning machine
with supplementary information (NCMSI). For the case of cloning two states, we
demonstrate that the optimal efficiency of the NCMSI in which the original
party and the supplementary party can perform quantum communication equals that
achieved by a two-step cloning protocol wherein classical communication is only
allowed between the original and the supplementary parties. From this
equivalence it follows that NCMSI may increase the success probabilities for
copying. Also, an upper bound on the unambiguous discrimination of two
nonorthogonal pure product states is derived. Our investigation generalizes and
completes the results in the literature.Comment: 22 pages; the presentation is revised, and some typos are correcte
- …