5,844 research outputs found

    Molecular emission near metal interfaces: the polaritonic regime

    Full text link
    The strong coupling of a dense layer of molecular excitons with surface-plasmon modes in a metal gives rise to polaritons (hybrid light-matter states) called plexcitons. Surface plasmons cannot directly emit into (or be excited by) free-space photons due to the fact that energy and momentum conservation cannot be simultaneously satisfied in photoluminescence. Most plexcitons are also formally non-emissive, even though they can radiate via molecules upon localization due to disorder and decoherence. However, a fraction of them are bright even in the presence of such deleterious processes. In this letter, we theoretically discuss the superradiant emission properties of these bright plexcitons, which belong to the upper energy branch and reveal huge photoluminescence enhancements compared to bare excitons. Our study generalizes the well-known problem of molecular emission next to a metal interface to collective molecular states and provides new design principles for the control of photophysical properties of molecular aggregates using polaritonic strategies.Comment: Replaced previous version, noticing that van Hove anomalies are only observed in the direct and reflected contributions of photoluminescence, but they cancel out when added up in the total photoluminescence. The correct phenomenology is that enhancements of photoluminescence are still huge (not infinite) and are near (not exactly at) the critical poin

    The use of interleaving for reducing radio loss in convolutionally coded systems

    Get PDF
    The use of interleaving after convolutional coding and deinterleaving before Viterbi decoding is proposed. This effectively reduces radio loss at low-loop Signal to Noise Ratios (SNRs) by several decibels and at high-loop SNRs by a few tenths of a decibel. Performance of the coded system can further be enhanced if the modulation index is optimized for this system. This will correspond to a reduction of bit SNR at a certain bit error rate for the overall system. The introduction of interleaving/deinterleaving into communication systems designed for future deep space missions does not substantially complicate their hardware design or increase their system cost

    Phase measurements with weak reference pulses

    Get PDF
    Quantum state discrimination for two coherent states with opposite phases as measured relative to a reference pulse is analyzed as functions of the intensities of both the signal states and of the reference pulse. This problem is relevant for Quantum Key Distribution with phase encoding. We consider both the optimum measurements and simple measurements that require only beamsplitters and photodetectors.Comment: 5 pages, 5 figures. I apologize for this boring pape

    Thermodynamics of Extended Bodies in Special Relativity

    Full text link
    Relativistic thermodynamics is generalized to accommodate four dimensional rotation in a flat spacetime. An extended body can be in equilibrium when its each element moves along a Killing flow. There are three types of basic Killing flows in a flat spacetime, each of which corresponds to translational motion, spatial rotation, and constant linear acceleration; spatial rotation and constant linear acceleration are regarded as four dimensional rotation. Translational motion has been mainly investigated in the past literature of relativistic thermodynamics. Thermodynamics of the other two is derived in the present paper.Comment: 8 pages, no figur

    Operational Theory of Homodyne Detection

    Full text link
    We discuss a balanced homodyne detection scheme with imperfect detectors in the framework of the operational approach to quantum measurement. We show that a realistic homodyne measurement is described by a family of operational observables that depends on the experimental setup, rather than a single field quadrature operator. We find an explicit form of this family, which fully characterizes the experimental device and is independent of a specific state of the measured system. We also derive operational homodyne observables for the setup with a random phase, which has been recently applied in an ultrafast measurement of the photon statistics of a pulsed diode laser. The operational formulation directly gives the relation between the detected noise and the intrinsic quantum fluctuations of the measured field. We demonstrate this on two examples: the operational uncertainty relation for the field quadratures, and the homodyne detection of suppressed fluctuations in photon statistics.Comment: 7 pages, REVTe

    The African Lungfish (\u3cem\u3eProtopterus dolloi\u3c/em\u3e): Ionoregulation and Osmoregulation in a Fish out of Water

    Get PDF
    Although urea production and metabolism in lungish have been thoroughly studied, we have little knowledge of how internal osmotic and electrolyte balance are controlled during estivation or in water. We tested the hypothesis that, compared with the body surface of teleosts, the slender African lungfish (Protopterus dolloi) body surface was relatively impermeable to water, Na+ and Cl- due to its greatly reduced gills. Accordingly, we measured the tritiated water (3H-H2O) flux in P. dolloi in water and during air exposure. In water, 3H-H2O efflux was comparable with the lowest measurements reported in freshwater teleosts, with a rate constant (K) of 17.6% body water h-1. Unidirectional ion fluxes, measured using 22Na+ and 36Cl-, indicated that Na+ and Cl- influx was more than 90% lower than values reported in most freshwater teleosts. During air exposure, a cocoon formed within 1 wk that completely covered the dorsolateral body surface. However, there were no disturbances to blood osmotic or ion (Na+, Cl-) balance, despite seven- to eightfold increases in plasma urea after 20 wk. Up to 13-fold increases in muscle urea (on a dry-weight basis) were the likely explanation for the 56% increase in muscle water content observed after 20 wk of air exposure. The possibility that muscle acted as a “water reservoir” during air exposure was supported by the 20% decline in body mass observed during subsequent reimmersion in water. This decline in body mass was equivalent to 28 mL water in a 100-g animal and was very close to the calculated net water gain (approximately 32 mL) observed during the 20-wk period of air exposure. Tritiated water and unidirectional ion fluxes on air-exposed lungfish revealed that the majority of water and ion exchange was via the ventral body surface at rates that were initially similar to aquatic rates. The 3H-H2O flux declined over time but increased upon reimmersion. We conclude that the slender lungfish body surface, including the gills, has relatively low permeability to water and ions but that the ventral surface is an important site of osmoregulation and ionoregulation. We further propose that an amphibian-like combination of ventral skin water and ion permeability, plus internal urea accumulation during air exposure, allows P. dolloi to extract water from its surroundings and to store water in the muscle when the water supply becomes limited

    Unified Treatment of Heterodyne Detection: the Shapiro-Wagner and Caves Frameworks

    Full text link
    A comparative study is performed on two heterodyne systems of photon detectors expressed in terms of a signal annihilation operator and an image band creation operator called Shapiro-Wagner and Caves' frame, respectively. This approach is based on the introduction of a convenient operator ψ^\hat \psi which allows a unified formulation of both cases. For the Shapiro-Wagner scheme, where [ψ^,ψ^]=0[\hat \psi, \hat \psi^{\dag}] =0, quantum phase and amplitude are exactly defined in the context of relative number state (RNS) representation, while a procedure is devised to handle suitably and in a consistent way Caves' framework, characterized by [ψ^,ψ^]0[\hat \psi, \hat \psi^{\dag}] \neq 0, within the approximate simultaneous measurements of noncommuting variables. In such a case RNS phase and amplitude make sense only approximately.Comment: 25 pages. Just very minor editorial cosmetic change

    Germ cells commit somatic stem cells to differentiation following priming by PI3K/Tor activity in the Drosophila testis

    Get PDF
    How and when potential becomes restricted in differentiating stem cell daughters is poorly understood. While it is thought that signals from the niche are actively required to prevent differentiation, another model proposes that stem cells can reversibly transit between multiple states, some of which are primed, but not committed, to differentiate. In the Drosophila testis, somatic cyst stem cells (CySCs) generate cyst cells, which encapsulate the germline to support its development. We find that CySCs are maintained independently of niche self-renewal signals if activity of the PI3K/Tor pathway is inhibited. Conversely, PI3K/Tor is not sufficient alone to drive differentiation, suggesting that it acts to license cells for differentiation. Indeed, we find that the germline is required for differentiation of CySCs in response to PI3K/Tor elevation, indicating that final commitment to differentiation involves several steps and intercellular communication. We propose that CySC daughter cells are plastic, that their fate depends on the availability of neighbouring germ cells, and that PI3K/Tor acts to induce a primed state for CySC daughters to enable coordinated differentiation with the germline

    Measuring the quantum statistics of an atom laser beam

    Get PDF
    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experimental realisations of the scheme may be tested with existing methods via measurements of Glauber's intensity correlation function.Comment: 4 pages, 3 figure

    Reconstituted high-density lipoproteins promote wound repair and blood flow recovery in response to ischemia in aged mice

    Get PDF
    Background: The average population age is increasing and the incidence of age-related vascular complications is rising in parallel. Impaired wound healing and disordered ischemia-mediated angiogenesis are key contributors to age-impaired vascular complications that can lead to amputation. High-density lipoproteins (HDL) have vasculo-protective properties and augment ischemia-driven angiogenesis in young animals. We aimed to determine the effect of reconstituted HDL (rHDL) on aged mice in a murine wound healing model and the hindlimb ischemia (HLI) model. Methods: Murine wound healing model—24-month-old aged mice received topical application of rHDL (50 μg/wound/ day) or PBS (vehicle control) for 10 days following wounding. Murine HLI model—Femoral artery ligation was performed on 24-month-old mice. Mice received rHDL (40 mg/kg) or PBS, intravenously, on alternate days, 1 week pre-surgery and up to 21 days post ligation. For both models, blood flow perfusion was determined using laser Doppler perfusion imaging. Mice were sacrificed at 10 (wound healing) or 21 (HLI) days post-surgery and tissues were collected for histological and gene analyses. Results: Daily topical application of rHDL increased the rate of wound closure by Day 7 post-wounding (25 %, p < 0.05). Wound blood perfusion, a marker of angiogenesis, was elevated in rHDL treated wounds (Days 4–10 by 22–25 %, p < 0. 05). In addition, rHDL increased wound capillary density by 52.6 %. In the HLI model, rHDL infusions augmented blood flow recovery in ischemic limbs (Day 18 by 50 % and Day 21 by 88 %, p < 0.05) and prevented tissue necrosis and toe loss. Assessment of capillary density in ischemic hindlimb sections found a 90 % increase in rHDL infused animals. In vitro studies in fibroblasts isolated from aged mice found that incubation with rHDL was able to significantly increase the key pro-angiogenic mediator vascular endothelial growth factor (VEGF) protein (25 %, p < 0.05). Conclusion: rHDL can promote wound healing and wound angiogenesis, and blood flow recovery in response to ischemia in aged mice. Mechanistically, this is likely to be via an increase in VEGF. This highlights a potential role for HDL in the therapeutic modulation of age-impaired vascular complications
    corecore