6,351 research outputs found

    Quantum Bit Commitment with a Composite Evidence

    Full text link
    Entanglement-based attacks, which are subtle and powerful, are usually believed to render quantum bit commitment insecure. We point out that the no-go argument leading to this view implicitly assumes the evidence-of-commitment to be a monolithic quantum system. We argue that more general evidence structures, allowing for a composite, hybrid (classical-quantum) evidence, conduce to improved security. In particular, we present and prove the security of the following protocol: Bob sends Alice an anonymous state. She inscribes her commitment bb by measuring part of it in the + (for b=0b = 0) or ×\times (for b=1b=1) basis. She then communicates to him the (classical) measurement outcome RxR_x and the part-measured anonymous state interpolated into other, randomly prepared qubits as her evidence-of-commitment.Comment: 6 pages, minor changes, journal reference adde

    Finite-amplitude interfacial waves in the presence of a current

    Get PDF
    Solutions for interfacial waves of permanent form in the presence of a current wcre obtained for small-to-moderate wave amplitudes. A weakly nonlinear approximation was used to give simple analytical solutions to second order in wave height. Numerical methods were usctl to obtain solutions for larger wave amplitudes, details are reported for a number of selected cases. A special class of finite-amplitude solutions, closely related to the well-known Stokes surface waves, were identified. Factors limiting the existence of steady solutions are examined

    A note on numerical computations of large amplitude standing waves

    Get PDF
    Numerical solutions of the inviscid equations that describe standing waves of finite amplitude on deep water are reported. The calculations suggest that standing waves exist of steepness, height and energy greater than the limiting wave of Penney & Price (1952). The computed profiles are found to be consistent with Taylor's (1953) experimental observations

    A new type of three-dimensional deep-water wave of permanent form

    Get PDF
    A new class of three-dimensional, deep-water gravity waves of permanent form has been found using an equation valid for weakly nonlinear waves due to Zakharov (1968). These solutions appear as bifurcations from the uniform two-dimensional wave train. The critical wave heights are given as functions of the modulation wave vector. The three-dimensional patterns may be skewed or symmetrical. An example of the skewed wave pattern is given and shown to be stable. The results become exact in the limit of very oblique modulations

    Thermal and mechanical structure of the upper mantle: A comparison between continental and oceanic models

    Get PDF
    Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins

    Quantum Communications with Compressed Decoherence Using Bright Squeezed Light

    Full text link
    We propose a scheme for long-distance distribution of quantum entanglement in which the entanglement between qubits at intermediate stations of the channel is established by using bright light pulses in squeezed states coupled to the qubits in cavities with a weak dispersive interaction. The fidelity of the entanglement between qubits at the neighbor stations (10 km apart from each other) obtained by postselection through the balanced homodyne detection of 7 dB squeezed pulses can reach F=0.99 without using entanglement purification, at same time, the probability of successful generation of entanglement is 0.34.Comment: 4 pages, 2 figure

    Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    Get PDF
    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor
    corecore