92 research outputs found

    Modeling and Tuning of Energy Harvesting Device Using Piezoelectric Cantilever Array

    Get PDF
    Piezoelectric devices have been increasingly investigated as a means of converting ambient vibrations into electrical energy that can be stored and used to power other devices, such as the sensors/actuators, micro-electro-mechanical systems (MEMS) devices, and microprocessor units etc. The objective of this work was to design, fabricate, and test a piezoelectric device to harvest as much power as possible from vibration sources and effectively store the power in a battery.;The main factors determining the amount of collectable power of a single piezoelectric cantilever are its resonant frequency, operation mode and resistive load in the charging circuit. A proof mass was used to adjust the resonant frequency and operation mode of a piezoelectric cantilever by moving the mass along the cantilever. Due to the tiny amount of collected power, a capacitor was suggested in the charging circuit as an intermediate station. To harvest sufficient energy, a piezoelectric cantilever array, which integrates multiple cantilevers in parallel connection, was investigated.;In the past, most prior research has focused on the theoretical analysis of power generation instead of storing generated power in a physical device. In this research, a commercial solid-state battery was used to store the power collected by the proposed piezoelectric cantilever array. The time required to charge the battery up to 80% capacity using a constant power supply was 970 s. It took about 2400 s for the piezoelectric array to complete the same task. Other than harvesting energy from sinusoidal waveforms, a vibration source that emulates a real environment was also studied. In this research the response of a bridge-vehicle system was used as the vibration sources such a scenario is much closer to a real environment compared with typical lab setups

    Compensation for Cross-Coupled Dynamics of Dual Twisted-String Actuation Systems

    Get PDF
    Twisted-string actuation devices have been adopted in various robotic systems due to their advantages of compact size and simple structure. To precisely control the displacement of such devices, a dual-direction actuating mechanism, which provides both extension and contraction of two strings simultaneously, must be implemented. Due to the physical properties of twisted string, the actuator has problems of nonlinear length variation and cross-coupled relationships between two strings. In this study, two controllers (PID-FC and LQR-FC) were synthesized with the consideration of cross-coupling dynamics between the two axes. The experimental results demonstrate the performance of both tracking and synchronization responses of these two types of controllers

    Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae)

    Get PDF
    International audienceKey message Geometric morphometric analyses (GMMs) of the leaf shape can distinguish two congeneric oak species Quercus dentata Thunberg and Quercus aliena Blume in sympatric areas.Contexts High genetic and morphological variation in different Quercus species hinder efforts to distinguish them. In China, Q. dentata and Q. aliena are generally sympatrically distributed in warm temperate forests, and share some leaf morphological characteristics.AimsThe aim of this study was to use the morphometric methods to discriminate these sympatric Chinese oaks preliminarily identified from molecular markers.MethodsThree hundred sixty-seven trees of seven sympatric Q. dentata and Q. aliena populations were genetically assigned to one of the two species or hybrids using Bayesian clustering analysis based on nSSR. This grouping served as a priori classification of the trees. Shapes of 1835 leaves from the 367 trees were analyzed in terms of 13 characters (landmarks) by GMMs. Correlations between environmental and leaf morphology parameters were studied using linear regression analyses.ResultsThe two species were efficiently discriminated by the leaf morphology analyses (96.9 and 95.9% of sampled Q. aliena trees and Q. dentata trees were correctly identified), while putative hybrids between the two species were found to be morphologically intermediate. Moreover, we demonstrated that the leaf morphological variations of Q. aliena, Q. dentata, and their putative hybrids are correlated with environmental factors, possibly because the variation of leaf morphology is part of the response to different habitats and environmental disturbances.ConclusionGMMs were able to correctly classify individuals from the two species preliminary identified as Q. dentata or Q. aliena by nSSR. The high degree of classification accuracy provided by this approach may be exploited to discriminate other problematic species and highlight its utility in plant ecology and evolution studies

    Analysis on vibration response of structure of hydrocyclone under action of internal spiral flow

    Get PDF
    The numerical modeling and experimental test are carried out to analyze the effects of the coupling between the structure of the hydrocyclone and the internal spiral flow on the structure motion of the hydrocyclone, and the interaction of the fluid and the structure is fully considered. The model of fluid structure interaction (FSI) of the hydrocyclone with variable diameter circular pipe is presented in this paper, and the related numerical simulation and experimental research are also carried out. Using the established fluid-structure interaction model, the dynamic characteristic of the hydrocyclone under the FSI condition is discussed, which obtained the vibration characteristics and the inter facial stress distribution characteristics. The maximum value of deformation is at the small cone-shaped part and the tail part connection of the hydrocyclone. The inter facial stress distribution is showed non symmetric state, and the maximum value of stress is located in the large cone-shaped part. After compared analysis the numerical results and the measured results, the numerical simulation is the same as the distribution trend of the test results at the maximum acceleration and position. The above analysis shows that the two-way FSI calculation model of hydrocyclone with variable diameter circular pipe is reasonable, and the motion characteristics of the structure are changed under the interaction of fluid and structure each other. The influence of the motion of the structure on the flow field of the hydrocyclone cannot be ignored. This is a problem that should be considered in the future design and application of hydrocyclone

    Resveratrol mediates mitochondrial function through the sirtuin 3 pathway to improve abnormal metabolic remodeling in atrial fibrillation

    Get PDF
    This study investigated the impact of resveratrol on abnormal metabolic remodeling in atrial fibrillation (AF) and explored potential molecular mechanisms. An AF cell model was established by high-frequency electrical stimulation of HL-1 atrial muscle cells. Resveratrol concentrations were optimized using CCK-8 and flow cytometry. AF-induced increases in ROS and mitochondrial calcium, along with decreased adenosine triphosphate (ATP) and mitochondrial membrane potential, were observed. Resveratrol mitigated these changes and maintained normal mitochondrial morphology. Moreover, resveratrol acted through the SIRT3-dependent pathway, as evidenced by its ability to suppress AF-induced acetylation of key metabolic enzymes. SIRT3 overexpression controls acetylation modifications, suggesting its regulatory role. In conclusion, resveratrol's SIRT3-dependent pathway intervenes in AF-induced mitochondrial dysfunction, presenting a potential therapeutic avenue for AF-related metabolic disorders. This study sheds light on the role of resveratrol in mitigating AF-induced mitochondrial remodeling and highlights its potential as a novel treatment for AF

    OMAE2010-21049 ANALYSIS OF EROSION AND FAILURE IN THE SUDDEN EXPANSION FRACTURING TUBING OF DEEP GAS WELLS

    Get PDF
    ABSTRACT With the increasing of flow rate during fracturing in deep gas well, the erosion of fracturing tubing is an issue of immense concern to the industry. Based on the Euler-Euler two -fluid theory, the numerical simulations have been performed to predict the flow field in the sudden expansion fracturing tubing. The velocity distributions and sand concentration profiles are obtained, and the simulation results show that separation and reflux come into being in the sudden expansion fracturing tubing when pumping sand slurries at high rate, and the sand concentration increases at some regions. The erosion and failure of the fracturing tubing are relevant to the sand concentration, the velocity and the impact angle. The erosion model was established with the erosion experiment, and the numerical simulation results were used to describe the erosion rate of sudden expansion fracturing tubing according to the established erosion models. The mainly erosion region obtained through the simulation is basically agree with the failure region of tubing during fracturing in deep gas wells

    Study on the vibration characteristics of structural of hydrocyclone based on fluid structure interaction

    Get PDF
    The hydrocyclone of main diameter 28mm with a typical variable diameter pipe structure was selected as the research object, and the interaction of the fluid and the structure was considered on the basis of the hypothesis of small deformation. The two-way fluid structure interaction (FSI) model of the hydrocyclone with variable diameter pipes was presented in this paper, and the related numerical simulation and experimental research was also carried out. The structure vibration characteristics of the structure were analyzed base on the fluid structure interaction, and the vibration characteristics of the structure were obtained. The vibration characteristics of the between the results of numerical simulation and experimental were consistent. Through above analysis showed that the two-way FSI calculation model of hydrocyclone with variable diameter pipe was reasonable. The influence of coupling effect on flow field couldnā€™t be ignored. The interaction between fluid and structure changed the movement characteristics of the structure, which should be considered in the design and application of hydrocyclone

    Complete Genome Sequence of Industrial Biocontrol Strain Paenibacillus polymyxa HY96-2 and Further Analysis of Its Biocontrol Mechanism

    Get PDF
    Paenibacillus polymyxa (formerly known as Bacillus polymyxa) has been extensively studied for agricultural applications as a plant-growth-promoting rhizobacterium and is also an important biocontrol agent. Our team has developed the P. polymyxa strain HY96-2 from the tomato rhizosphere as the first microbial biopesticide based on P. polymyxa for controlling plant diseases around the world, leading to the commercialization of this microbial biopesticide in China. However, further research is essential for understanding its precise biocontrol mechanisms. In this paper, we report the complete genome sequence of HY96-2 and the results of a comparative genomic analysis between different P. polymyxa strains. The complete genome size of HY96-2 was found to be 5.75 Mb and 5207 coding sequences were predicted. HY96-2 was compared with seven other P. polymyxa strains for which complete genome sequences have been published, using phylogenetic tree, pan-genome, and nucleic acid co-linearity analysis. In addition, the genes and gene clusters involved in biofilm formation, antibiotic synthesis, and systemic resistance inducer production were compared between strain HY96-2 and two other strains, namely, SC2 and E681. The results revealed that all three of the P. polymyxa strains have the ability to control plant diseases via the mechanisms of colonization (biofilm formation), antagonism (antibiotic production), and induced resistance (systemic resistance inducer production). However, the variation of the corresponding genes or gene clusters between the three strains may lead to different antimicrobial spectra and biocontrol efficacies. Two possible pathways of biofilm formation in P. polymyxa were reported for the first time after searching the KEGG database. This study provides a scientific basis for the further optimization of the field applications and quality standards of industrial microbial biopesticides based on HY96-2. It may also serve as a reference for studying the differences in antimicrobial spectra and biocontrol capability between different biocontrol agents

    Process of Extraction Protein from Selenium-enriched Lyophyllum decastes Mycelia and Analysis of Its Amino Acid

    Get PDF
    The process of extracting seleno-protein from the selenium enriched Lyophyllum decastes mycelia cultured in a 20 L fermentor was optimized, and the effects of selenium enrichment on both types and contents of amino acids in Lyophyllum decastes mycelia were analyzed. Single factor tests and Box-Benhnken central combined response surface test were used to optimize process of extracting seleno-protein from Lyophyllum decastes mycelia. The content of protein was determined by 3,3'-diaminobenzidine spectrophotometry. The types and contents of amino acids in mycelia protein before and after selenium enrichment were compared by means of amino acid analyzer. The results showed that the optimal conditions of extracting seleno-protein from mycelia of Lyophyllum decastes were extraction temperature of 64 ā„ƒ, extraction time of 60 min, liquid-solid ratio of 200:1 g/mL, and extraction times of 2. The protein extraction rate was 75.13%, and the content of selenium in mycelia was 63.87 Ī¼g/g. The amino acid composition were analyzed by means amino acid score (AAS) and chemical score (CS), and the nutritional value of the protein in the selenium-enriched Lyophyllum decastes mycelia was evaluated. The varieties of amino acids in the selenium-enriched Lyophyllum decastes mycelia were abundant and the content of essential amino acids for human body was 17.20 g/100 g, 19.75% higher than that in the non-selenium-ecriched Lyophyllum decastes mycelia. The ratio of EAA/NEAA was 0.51, close to the recommended value proposed by WHO, and the values of both AAS and CS were close to the those in the model protein. In summary, the protein extraction rate could be improved by optimizing the extraction process, and there was selenium in the protein from selenium-enriched mycelia, which promoted the increase of amino acid content. The nutritional value of protein in selenium-enriched mycelia was higher than that in non-selenium-riched mycelia, and selenium-enrichec mycelia had potential edible and application value
    • ā€¦
    corecore