1,074 research outputs found
Indoor Depth Completion with Boundary Consistency and Self-Attention
Depth estimation features are helpful for 3D recognition. Commodity-grade
depth cameras are able to capture depth and color image in real-time. However,
glossy, transparent or distant surface cannot be scanned properly by the
sensor. As a result, enhancement and restoration from sensing depth is an
important task. Depth completion aims at filling the holes that sensors fail to
detect, which is still a complex task for machine to learn. Traditional
hand-tuned methods have reached their limits, while neural network based
methods tend to copy and interpolate the output from surrounding depth values.
This leads to blurred boundaries, and structures of the depth map are lost.
Consequently, our main work is to design an end-to-end network improving
completion depth maps while maintaining edge clarity. We utilize self-attention
mechanism, previously used in image inpainting fields, to extract more useful
information in each layer of convolution so that the complete depth map is
enhanced. In addition, we propose boundary consistency concept to enhance the
depth map quality and structure. Experimental results validate the
effectiveness of our self-attention and boundary consistency schema, which
outperforms previous state-of-the-art depth completion work on Matterport3D
dataset. Our code is publicly available at
https://github.com/patrickwu2/Depth-CompletionComment: Accepted by ICCVW (RLQ) 201
Fabrication of a Miniature Zinc Aluminum Oxide Nanowire Array Gas Sensor and Application for Environmental Monitoring
A miniature n-type semiconductor gas sensor was fabricated successfully using zinc aluminum oxide nanowire array and applied to sense oxygen. The present study provided a novel method to produce zinc aluminum alloy nanowire 80 nm in diameter by the vacuum die casting technique and then obtain zinc aluminum oxide nanowire array using the thermal oxidation technique. The gas sensing properties were evaluated through the change of the sensitivity. The factors influencing the sensitivity of the gas sensor, such as the alloy composition, operating temperature, and oxygen concentration, were investigated further. Experimental results indicated that the maximum sensitivity could be acquired when the weight percentage of aluminum was 5% in zinc aluminum alloy at the operating temperature of 200°C
Prehemodialysis arteriovenous access creation is associated with better cardiovascular outcomes in patients receiving hemodialysis: a population-based cohort study
Background Cardiovascular (CV) disease contributes to nearly half of the mortalities in patients with end-stage renal disease. Patients who received prehemodialysis arteriovenous access (pre-HD AVA) creation had divergent CV outcomes. Methods We conducted a population-based cohort study by recruiting incident patients receiving HD from 2001 to 2012 from the Taiwan National Health Insurance Research Database. Patientsâ characteristics, comorbidities, and medicines were analyzed. The primary outcome of interest was major adverse cardiovascular events (MACEs), defined as hospitalization due to acute myocardial infarction, stroke, or congestive heart failure (CHF) occurring within the first year of HD. Secondary outcomes included MACE-related mortality and all-cause mortality in the same follow-up period. Results The patients in the pre-HD AVA group were younger, had a lower burden of underlying diseases, were more likely to use erythropoiesis-stimulating agents but less likely to use reninâangiotensinâaldosterone system blockers. The patients with pre-HD AVA creation had a marginally lower rate of MACEs but a significant 35% lower rate of CHF hospitalization than those without creation (adjusted hazard ratio (HR) 0.65, 95% confidence interval (CI) [0.48â0.88]). In addition, the pre-HD AVA group exhibited an insignificantly lower rate of MACE-related mortality but a significantly 52% lower rate of all-cause mortality than the non-pre-HD AVA group (adjusted HR 0.48, 95% CI [0.39â0.59]). Sensitivity analyses obtained consistent results. Conclusions Pre-HD AVA creation is associated with a lower rate of CHF hospitalization and overall death in the first year of dialysis
Feasibility of Bispectral Index-Guided Propofol Infusion for Flexible Bronchoscopy Sedation: A Randomized Controlled Trial
There are safety issues associated with propofol use for flexible bronchoscopy (FB). The bispectral index (BIS) correlates well with the level of consciousness. The aim of this study was to show that BIS-guided propofol infusion is safe and may provide better sedation, benefiting the patients and bronchoscopists.After administering alfentanil bolus, 500 patients were randomized to either propofol infusion titrated to a BIS level of 65-75 (study group) or incremental midazolam bolus based on clinical judgment to achieve moderate sedation. The primary endpoint was safety, while the secondary endpoints were recovery time, patient tolerance, and cooperation.The proportion of patients with hypoxemia or hypotensive events were not different in the 2 groups (study vs. control groups: 39.9% vs. 35.7%, pâ=â0.340; 7.4% vs. 4.4%, pâ=â0.159, respectively). The mean lowest blood pressure was lower in the study group. Logistic regression revealed male gender, higher American Society of Anesthesiologists physical status, and electrocautery were associated with hypoxemia, whereas lower propofol dose for induction was associated with hypotension in the study group. The study group had better global tolerance (p<0.001), less procedural interference by movement or cough (13.6% vs. 36.1%, p<0.001; 30.0% vs. 44.2%, pâ=â0.001, respectively), and shorter time to orientation and ambulation (11.7±10.2 min vs. 29.7±26.8 min, p<0.001; 30.0±18.2 min vs. 55.7±40.6 min, p<0.001, respectively) compared to the control group.BIS-guided propofol infusion combined with alfentanil for FB sedation provides excellent patient tolerance, with fast recovery and less procedure interference.ClinicalTrials. gov NCT00789815
Thrombomodulin Regulates Keratinocyte Differentiation and Promotes Wound Healing
The membrane glycoprotein thrombomodulin (TM) has been implicated in keratinocyte differentiation and wound healing, but its specific function remains undetermined. The epidermis-specific TM knockout mice were generated to investigate the function of TM in these biological processes. Primary cultured keratinocytes obtained from TMlox/lox; K5-Cre mice, in which TM expression was abrogated, underwent abnormal differentiation in response to calcium induction. Poor epidermal differentiation, as evidenced by downregulation of the terminal differentiation markers loricrin and filaggrin, was observed in TMlox/lox; K5-Cre mice. Silencing TM expression in human epithelial cells impaired calcium-induced extracellular signalâregulated kinase pathway activation and subsequent keratinocyte differentiation. Compared with wild-type mice, the cell spreading area and wound closure rate were lower in keratinocytes from TMlox/lox; K5-Cre mice. In addition, the lower density of neovascularization and smaller area of hyperproliferative epithelium contributed to slower wound healing in TMlox/lox; K5-Cre mice than in wild-type mice. Local administration of recombinant TM (rTM) accelerated healing rates in the TM-null skin. These data suggest that TM has a critical role in skin differentiation and wound healing. Furthermore, rTM may hold therapeutic potential for the treatment of nonhealing chronic wounds
Toward controllable and predictable synthesis of high-entropy alloy nanocrystals.
High-entropy alloy (HEA) nanocrystals have attracted extensive attention in catalysis. However, there are no effective strategies for synthesizing them in a controllable and predictable manner. With quinary HEA nanocrystals made of platinum-group metals as an example, we demonstrate that their structures with spatial compositions can be predicted by quantitatively knowing the reduction kinetics of metal precursors and entropy of mixing in the nanocrystals under dropwise addition of the mixing five-metal precursor solution. The time to reach a steady state for each precursor plays a pivotal role in determining the structures of HEA nanocrystals with homogeneous alloy and core-shell features. Compared to the commercial platinum/carbon and phase-separated counterparts, the dendritic HEA nanocrystals with a defect-rich surface show substantial enhancement in catalytic activity and durability toward both hydrogen evolution and oxidation. This quantitative study will lead to a paradigm shift in the design of HEA nanocrystals, pushing away from the trial-and-error approach
Electromagnetic Wave Theory and Applications
Contains table of contents for Section 3 and reports on five research projects.U.S. Department of Transportation Contract DTRS-57-88-C-00078TTD13U.S. Department of Transportation Contract DTRS-57-88-C-00078TTD30Defense Advanced Research Projects Agency Contract MDA972-90-C-0021Digital Equipment CorporationIBM CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001Schlumberger-Doll ResearchU.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Grant 958461National Aeronautics and Space Administration Grant NAGW-1272U.S. Army Corp of Engineers Contract DACA39-87-K-0022U.S. Navy - Office of Naval Research Grant N00014-89-J-110
Hetero-cycloreversions Mediated by Photoinduced Electron Transfer
[EN] Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest.
In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies.
In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited.
In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction.
The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C=X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.Financial support from the Spanish Government (Grants CTQ2010-14882, SEV2012-0267, and JCI-2010-06204) and the Generalitat Valenciana (Prometeo II/2013/005) is gratefully acknowledged.PĂ©rez Ruiz, R.; JimĂ©nez Molero, MC.; Miranda Alonso, MĂ. (2014). Hetero-cycloreversions Mediated by Photoinduced Electron Transfer. Accounts of Chemical Research. 47(4):1359-1368. https://doi.org/10.1021/ar4003224S1359136847
- âŠ