20 research outputs found

    Association between the c.910A>G genetic variant of the XRCC1 gene and susceptibility to esophageal cancer in the Chinese Han population

    No full text
    Esophageal cancer (EC) is a common malignancy worldwide. The X-ray repair cross-complementing 1 gene (XRCC1) is one of the most important candidate genes for influencing susceptibility to EC. This study aimed to investigate the effect of XRCC1 genetic variants on susceptibility to EC. A total of 383 EC patients (males: 239, females: 144, mean age: 56.62) and 387 cancer-free controls (males: 251, females: 136, mean age: 58.23) were enrolled in this study. The c.910A>G genetic variant of the XRCC1 gene was determined by polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing methods. The allele and genotype frequencies indicated statistical differences between EC patients and cancer-free controls. The c.910A>G genetic variant was statistically associated with increased susceptibility to EC [GG vs AA: odds ratio (OR)=1.79, 95% confidence interval (CI)=1.12-2.86, P=0.014; GG vs AG/AA: OR=1.76, 95%CI=1.13-2.75, P=0.013; G vs A: OR=1.25, 95%CI=1.01-1.55, P=0.041]. The allele G and genotype GG could contribute to the increased susceptibility to EC. Our findings suggest that the c.910A>G genetic variant is associated with susceptibility to EC in the Chinese Han population, and might be used as a molecular marker for detecting susceptibility to EC

    Sensitivity of ARGO-YBJ to different composition models in the energy range 10 ÷ 500 TeV

    Get PDF
    The ARGO-YBJ experiment is currently under construction at the Yangbajing Cosmic Ray Laboratory (4300 m a.s.l.).The detector consists of a central carpet, 74 × 78 m2, made of a single layer of Resistive Plate Counters (RPCs), and surrounded by a partially instrumented guard ring for a total instrumented area of about 6700 m2. The digital read-out, performed by means of pick-up electrodes 6.7 × 62 cm2 (strip), allows to measure the charged particle number of small size air showers. The technique of counting the number of fired strips on the ARGO carpet corresponds to operate in the 10÷500 TeV energy region where both direct and indirect measurements on the primary cosmic radiation have been performed. Many composition models have been proposed by different experiments. In this work we discuss the ability of the ARGO detector to discriminate among some models
    corecore