2,902 research outputs found

    A model explaining neutrino masses and the DAMPE cosmic ray electron excess

    Get PDF
    We propose a flavored U(1)eμU(1)_{e\mu} neutrino mass and dark matter~(DM) model to explain the recent DArk Matter Particle Explorer (DAMPE) data, which feature an excess on the cosmic ray electron plus positron flux around 1.4 TeV. Only the first two lepton generations of the Standard Model are charged under the new U(1)eμU(1)_{e\mu} gauge symmetry. A vector-like fermion ψ\psi, which is our DM candidate, annihilates into e±e^{\pm} and μ±\mu^{\pm} via the new gauge boson Z′Z' exchange and accounts for the DAMPE excess. We have found that the data favors a ψ\psi mass around 1.5~TeV and a Z′Z' mass around 2.6~TeV, which can potentially be probed by the next generation lepton colliders and DM direct detection experiments.Comment: 7 pages, 3 figures. V2: version accepted by Physics Letters

    Assessment of cardiac dysfunction by dissipative energy loss derived from vector flow mapping

    Get PDF

    Effect of temperature on the accumulation of marine biogenic gels in the surface microlayer near the outlet of nuclear power plants and adjacent areas in the Daya Bay, China

    Get PDF
    The surface microlayer (SML) in marine systems is often characterized by an enrichment of biogenic, gel-like particles, such as the polysaccharide-containing transparent exopolymer particles (TEP) and the protein-containing Coomassie stainable particles (CSP). This study investigated the distribution of TEP and CSP, in the SML and underlying water, as well as their bio-physical controlling factors in Daya Bay, an area impacted by warm discharge from two Nuclear power plants (Npp’s) and aquaculture during a research cruise in July 2014. The SML had higher proportions of cyanobacteria and of pico-size Chl a contrast to the underlayer water, particularly at the nearest outlet station characterized by higher temperature. Diatoms, dinoflagellates and chlorophyll a were depleted in the SML. Both CSP and TEP abundance and total area were enriched in the SML relative to the underlying water, with enrichment factors (EFs) of 1.5–3.4 for CSP numbers and 1.32–3.2 for TEP numbers. Although TEP and CSP showed highest concentration in the region where high productivity and high nutrient concertation were observed, EFs of gels and of dissolved organic carbon (DOC) and dissolved acidic polysaccharide (> 1 kDa), exhibited higher values near the outlet of the Npp’s than in the adjacent waters. The positive relation between EF’s of gels and temperature and the enrichment of cyanobacteria in the SML may be indicative of future conditions in a warmer ocean, suggesting potential effects on adjusting phytoplankton community, biogenic element cycling and air-sea exchange processe

    Polarization-based cyclic weak value metrology for angular velocity measurement

    Full text link
    Weak value has been proved to amplify the detecting changes of the meters at the cost of power due to post-selection. Previous power-recycling schemes enable the failed post-selection photons to be reselected repeatedly, thus surpassing the upper noise limit and improving the precision of interferometric systems. Here we introduce three cyclic methods to improve the sensitivity of polarization-based weak-value-based angular velocity measurement: power-, signal- and dual-recycling schemes. By inserting one or two partially transmitting mirrors inside the system, both the power and precision of detected signals are greatly enhanced, and the dual-recycling scheme has wider optimal region than that of power- or signal-recycling schemes. Compared to non-polarization schemes, polarization-based schemes enjoy lower optical loss and unique cyclic directions. These reduce the crosstalk among different paths of light and, theoretically, eliminate the walk-off effect, thus towering in both theoretical performance and application.Comment: 7 pages, 3 figure

    3-Chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid–triphenyl­phosphine oxide (1/1)

    Get PDF
    In the title 1:1 adduct, C11H10ClN3O2·C18H15OP, the dihedral angle between the pyridine and pyrazole rings is 10.3 (2)°. The two components of the adduct are linked by an O—H⋯O hydrogen bond

    Comparison of antigenicity and conformational changes to β-lactoglobulin following kestose glycation reaction with and without dynamic high-pressure microfluidization treatment

    Get PDF
    Previous work indicated that conformational changes of β-lactoglobulin (β-LG) induced by dynamic high pressure microfluidization (DHPM) was related to the increase of antigenicity. In this study, β-LG glycated with 1-kestose and combined with DHPM decreased the antigenicity of β-LG. The antigenicity of control, β-LG-kestose (0.1 MPa) and β-LG-kestose (80 MPa) were 100, 79 and 42 μg/mL respectively. The molecular weight of β-LG conjugated to kestose increased from 18.4 to 19.6 kDa and its conformation scarcely changed. Conversely, combined with DHPM treatment (80 MPa), β-LG conjugated to kestose formed two conjugates with molecular weight of 18.8 and 19.8 kDa, respectively. Furthermore, the unfolding of β-LG as a result of the treatments is reflected by a decrease of intrinsic and synchronous fluorescence intensity and changes to the secondary structure. The conformational changes induced by DHPM and glycation treatments synergistically decrease the antigenicity of β-LG due to more masked or disrupted epitopes
    • …
    corecore