129 research outputs found

    Surface Immunoproteomics Reveals Potential Biomarkers in Alicyclobacillus acidoterrestris

    Get PDF
    Alicyclobacillus acidoterrestris is a major putrefying bacterium that can cause pecuniary losses in the global juice industry. Current detection approaches are time-consuming and exhibit reduced specificity and sensitivity. In this study, an immunoproteomic approach was utilized to identify specific biomarkers from A. acidoterrestris for the development of new detection methods. Cell surface-associated proteins were extracted and separated by 2-D (two-dimensional) gel electrophoresis. Immunogenic proteins were detected by Western blot analysis using antisera against A. acidoterrestris. Twenty-two protein spots exhibiting immunogenicity were excised and eighteen of the associated spots were successfully identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS). These proteins were observed to be involved in energy and carbohydrate metabolism, transmembrane transport, response to oxidative stress, polypeptide biosynthesis, and molecule binding activity. This is the first report detailing the identification of cell surface-associated antigens of A. acidoterrestris. The identified immunogenic proteins could serve as potential targets for the development of novel detection methods

    Identification of Characteristic Flavor Substances of Jingyang Fu Brick Tea by Gas Chromatography-Ion Mobility Spectrometry and Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry

    Get PDF
    In order to determine the characteristic flavor of Jingyang Fu brick tea, a national geographical indication product, the volatile compounds of Jingyang Fu brick tea, Anhua Fu brick tea and four other dark teas were analyzed by gas chromatography-ion mobility spectrometry (GC-IMS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) in this study. The results showed that in total 154 compounds were identified by GC-IMS and HS-SPME-GC-MS, and the flavor composition of Jingyang Fu brick tea was clearly distinguished from that of Anhua Fu-brick tea and that of the other dark teas. Totally 12 characteristic substances of Jingyang Fu brick tea were obtained by comparative analysis with the other dark tea, seven of which were validated by GC-IMS, including 1-octen-3-one, n-hexanol, guaiacol, ÎČ-pinene, methyl butyrate, n-propanol and 2-heptanone, and the remaining five were characterized by HS-SPME-GC-MS based on aroma activity values, including hexanal, decanal, (E,E)-3,5-octadien-2-one, methyl salicylate and α-viologenone. The identification of characteristic flavor substances can provide a theoretical basis for the identification, origin tracing and processing optimization of Jingyang Fu brick tea

    Relationships between structure and antioxidant capacity and activity of glycosylated flavonols

    Get PDF
    The antioxidant capacity (AC) and antioxidant activity (AA) of three flavonols (FLV), aglycones and their glycosylated derivatives were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2â€Č-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays in various solvents. Findings confirmed that the glycosylation at the 3-position (3-glycosylation) always decreased the AC under most conditions due to substitution of the 3-position hydroxyl group and glycoside disruption in the molecular planarity. The 7-glycosylated derivatives did not have the above effects, thus generally exhibited ACs similar to their aglycones. Glycosylation decreased the AA of kaempferol and isorhamnetin for both assays in methanol, 3-glycosylation inhibited quercetin AA in the ABTS assay. In the DPPH assay, the AA of 3-glycosylated quercetin was significantly higher than quercetin. Using LC–MS/MS analysis, we found that quercetin and quercetin-7-glucoside underwent dimerization during the antioxidant reaction, potentially leading to a decline in AAs. However, 3-glycoside substitution may have hindered dimer formation, thereby allowing the FLVs to retain strong free radical scavenging abilities.National Key Research and Development Program of China | Ref. 2019YFC160670

    Literature analysis on asparagus roots and review of its functional characterizations

    Get PDF
    Asparagus root (AR) is utilized globally as a traditional herbal medicine because it contains various bioactive compounds, such as polyphenols, flavonoids, saponins, and minerals. The composition profiles of AR are strongly affected by its botanical and geographical origins. Although minerals and heavy metals are minor constituents of AR, they play a crucial role in determining its quality and efficacy. A comprehensive classification of AR, its phytochemistry, and its pharmacology were reviewed and interpreted herein. Potentially eligible articles (in English) were identified through an electronic search of the Web of Science database (2010–2022) and Google (2001–2022). We used the primary search term “Asparagus roots” combined with the words “pharmacology,” “bioactive compounds,” “physicochemical properties,” and “health benefits” to find the relevant literature. We screened the titles, keywords, and abstracts of the publications obtained from the database. A full copy of the article was obtained for further assessment if deemed appropriate. Different asparagus species might potentially be used as herbal medicines and functional foods. Phytochemical studies have revealed the presence of various bioactive compounds as valuable secondary metabolites. The dominant class of bioactive compounds in AR is flavonoids. Furthermore, AR displayed significant pharmacological effects, such as antioxidant, antimicrobial, antiviral, anticancer, anti-inflammatory, and antidiabetic effects, as shown in animal and human studies. This review provides a valuable resource to enable a thorough assessment of the profile of Asparagus root as a functional ingredient for the pharmaceutical and food industries. In addition, it is anticipated that this review will provide information to healthcare professionals seeking alternative sources of critical bioactive compounds

    Open X-Embodiment:Robotic learning datasets and RT-X models

    Get PDF
    Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train "generalist" X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. The project website is robotics-transformer-x.github.io

    Effect of Cinnamaldehyde and Citral Combination on Transcriptional Profile, Growth, Oxidative Damage and Patulin Biosynthesis of Penicillium expansum

    No full text
    Penicillium expansum, as a main postharvest pathogen of fruits, can secrete patulin (PAT), causing fruit decay and health problems. In this study, the antifungal test, SEM (scanning electron microscope) observation, transcriptional profile, PAT biosynthesis, and physiological characters of P. expansum exposed to cinnamaldehyde and citral combination (Cin/Cit) were evaluated. Cin/Cit could inhibit the mycelial growth and spore germination of P. expansum in a dose-dependent manner. Besides, Cin/Cit caused spores and mycelia wrinkled and depressed by SEM observation. Gene expression profiles of P. expansum were conducted by RNA sequencing (RNA-seq) in the presence or absence of Cin/Cit treatment. A total of 1713 differentially expressed genes (DEGs) were obtained, including 793 down-regulated and 920 up-regulated genes. Most of the DEGs participated in the biosynthesis of secondary metabolites, amino acid metabolism, and oxidation-reduction process, etc. Cin/Cit induced the dysfunction of the mitochondrial membrane, causing the potential influence on energy metabolism and reactive oxidative species production. The changes of superoxide dismutase (SOD) and catalase (CAT) activities combing with the increase of hydrogen peroxide content indicated the oxidative stress on P. expansum induced by Cin/Cit, which corresponded well with the transcriptional results. Moreover, both the RNA-seq data and the qRT-PCR showed the remarkable down-regulation of genes included in the PAT biosynthetic pathway under the Cin/Cit treatment. These findings provided more useful information about the antifungal mechanism of Cin/Cit against P. expansum at molecular and gene levels and suggested that Cin/Cit is a potential candidate to control P. expansum

    Quality Evaluation of Kiwi Wine

    No full text
    • 

    corecore