384 research outputs found

    A Study on the Practical Carrying Capacity of Large High-Speed Railway Stations considering Train Set Utilization

    Get PDF
    Methods for solving the carrying capacity problem for High-Speed Railways (HSRs) have received increasing attention in the literature in the last few years. As important nodes in the High-Speed Railway (HSR) network, large stations are usually the carrying capacity bottlenecks of the entire network due to the presence of multiple connections in different directions and the complexity of train operations at these stations. This paper focuses on solving the station carrying capacity problem and considers train set utilization constraints, which are important influencing factors that have rarely been studied by previous researchers. An integer linear programming model is built, and the CPLEX v12.2 software is used to solve the model. The proposed approach is tested on a real-world case study of the Beijing South Railway Station (BS), which is one of the busiest and most complex stations in China. Studies of the impacts of different train set utilization constraints on the practical station carrying capacity are carried out, and some suggestions are then presented for enhancing the practical carrying capacity. Contrast tests indicate that both the efficiency of the solving process and the quality of the solution show huge breakthroughs compared with the heuristic approach

    Effects of laser fluence on silicon modification by four-beam laser interference

    Get PDF
    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm, 495 mJ/cm, and 637 mJ/cm, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7-9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications

    Optimizing High-Speed Railroad Timetable with Passenger and Station Service Demands: A Case Study in the Wuhan-Guangzhou Corridor

    Get PDF
    This paper aims to optimize high-speed railroad timetables for a corridor. We propose an integer programming model using a time-space network-based approach to consider passenger service demands, train scheduling, and station service demands simultaneously. A modified branch-and-price algorithm is used for the computation. This algorithm solves the linear relaxation of all nodes in a branch-and-bound tree using a column generation algorithm to derive a lower-bound value (LB) and derive an upper-bound value (UB) using a rapid branching strategy. The optimal solution is derived by iteratively updating the upper- and lower-bound values. Three acceleration strategies, namely, initial solution iteration, delayed constraints, and column removal, were designed to accelerate the computation. The effectiveness and efficiency of the proposed model and algorithm were tested using Wuhan-Guangzhou high-speed railroad data. The results show that the proposed model and algorithm can quickly reduce the defined cost function by 38.2% and improve the average travel speed by 10.7 km/h, which indicates that our proposed model and algorithm can effectively improve the quality of a constructed train timetable and the travel efficiency for passengers. Document type: Articl

    A Study on the Practical Carrying Capacity of Large High-Speed Railway Stations considering Train Set Utilization

    Get PDF
    Methods for solving the carrying capacity problem for High-Speed Railways (HSRs) have received increasing attention in the literature in the last few years. As important nodes in the High-Speed Railway (HSR) network, large stations are usually the carrying capacity bottlenecks of the entire network due to the presence of multiple connections in different directions and the complexity of train operations at these stations. This paper focuses on solving the station carrying capacity problem and considers train set utilization constraints, which are important influencing factors that have rarely been studied by previous researchers. An integer linear programming model is built, and the CPLEX v12.2 software is used to solve the model. The proposed approach is tested on a real-world case study of the Beijing South Railway Station (BS), which is one of the busiest and most complex stations in China. Studies of the impacts of different train set utilization constraints on the practical station carrying capacity are carried out, and some suggestions are then presented for enhancing the practical carrying capacity. Contrast tests indicate that both the efficiency of the solving process and the quality of the solution show huge breakthroughs compared with the heuristic approach

    SY18ΔL60L: a new recombinant live attenuated African swine fever virus with protection against homologous challenge

    Get PDF
    IntroductionAfrican swine fever (ASF) is an acute and highly contagious disease and its pathogen, the African swine fever virus (ASFV), threatens the global pig industry. At present, management of ASF epidemic mainly relies on biological prevention and control methods. Moreover, due to the large genome of ASFV, only half of its genes have been characterized in terms of function.MethodsHere, we evaluated a previously uncharacterized viral gene, L60L. To assess the function of this gene, we constructed a deletion strain (SY18ΔL60L) by knocking out the L60L gene of the SY18 strain. To evaluate the growth characteristics and safety of the SY18ΔL60L, experiments were conducted on primary macrophages and pigs, respectively.ResultsThe results revealed that the growth trend of the recombinant strain was slower than that of the parent strain in vitro. Additionally, 3/5 (60%) pigs intramuscularly immunized with a 105 50% tissue culture infectious dose (TCID50) of SY18ΔL60L survived the 21-day observation period. The surviving pigs were able to protect against the homologous lethal strain SY18 and survive. Importantly, there were no obvious clinical symptoms or viremia.DiscussionThese results suggest that L60L could serve as a virulence- and replication-related gene. Moreover, the SY18ΔL60L strain represents a new recombinant live-attenuated ASFV that can be employed in the development of additional candidate vaccine strains and in the elucidation of the mechanisms associated with ASF infection

    Interconversion of intrinsic defects in SrTiO3(001)SrTiO_3(001)

    Get PDF
    Photoemission features associated with states deep in the band gap of n−SrTiO₃ (001) are found to be ubiquitous in bulk crystals and epitaxial films. These features are present even when there is little signal near the Fermi level. Analysis reveals that these states are deep-level traps associated with defects. The commonly investigated defects—O vacancies, Sr vacancies, and aliovalent impurity cations on the Ti sites—cannot account for these features. Rather, ab initio modeling points to these states resulting from interstitial oxygen and its interaction with donor electrons

    Absence of nematic instability in the kagome metal CsV3_3Sb5_5

    Full text link
    Ever since the discovery of the charge density wave (CDW) transition in the kagome metal CsV3_3Sb5_5, the nature of its symmetry breaking is under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature (TCDWT_{\rm CDW}), an additional electronic nematic instability well below TCDWT_{\rm CDW} was reported based on the diverging elastoresistivity coefficient in the anisotropic channel (mE2gm_{E_{2g}}). Verifying the existence of a nematic transition below TCDWT_{\rm CDW} is not only critical for establishing the correct description of the CDW order parameter, but also important for understanding the low-temperature superconductivity. Here, we report elastoresistivity measurements of CsV3_3Sb5_5 using three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficient mE2gm_{E_{2g}} is temperature-independent except for a step jump at TCDWT_{\rm CDW}. The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficient mA1gm_{A_{1g}} increases below TCDWT_{\rm CDW}, reaching a peak value of 90 at T=20T^* = 20 K. Our results strongly indicate that the phase transition at TT^* is not nematic in nature and the previously reported diverging elastoresistivity is due to the contamination from the A1gA_{1g} channel
    corecore