92 research outputs found

    Nanoscopy of pairs of atoms by fluorescence in a magnetic field

    Full text link
    Spontaneous emission spectra of two initially excited closely spaced identical atoms are very sensitive to the strength and the direction of the applied magnetic field. The relevant schemes are considered that ensure the determination of the mutual spatial orientation of the atoms and the distance between them by entirely optical means. A corresponding theoretical description is given accounting for the dipole-dipole interaction between the two atoms in the presence of a magnetic field and for polarizations of the quantum field interacting with magnetic sublevels of the two-atom system

    Superfluidity of identical fermions in an optical lattice: atoms and polar molecules

    Get PDF
    In this work, we discuss the emergence of pp-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms, the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the pp-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic pp-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological px+ipyp_x+ip_y superfluid of identical microwave-dressed polar molecules.Comment: 14 pages, 4 figures; prepared for proceedings of the IV International Conference on Quantum Technologies (Moscow, July 12-16, 2017); the present paper summarizes the results of our studies arXiv:1601.03026 and arXiv:1701.0852

    Resistivity of non-Galilean-invariant Fermi- and non-Fermi liquids

    Get PDF
    While it is well-known that the electron-electron (\emph{ee}) interaction cannot affect the resistivity of a Galilean-invariant Fermi liquid (FL), the reverse statement is not necessarily true: the resistivity of a non-Galilean-invariant FL does not necessarily follow a T^2 behavior. The T^2 behavior is guaranteed only if Umklapp processes are allowed; however, if the Fermi surface (FS) is small or the electron-electron interaction is of a very long range, Umklapps are suppressed. In this case, a T^2 term can result only from a combined--but distinct from quantum-interference corrections-- effect of the electron-impurity and \emph{ee} interactions. Whether the T^2 term is present depends on 1) dimensionality (two dimensions (2D) vs three dimensions (3D)), 2) topology (simply- vs multiply-connected), and 3) shape (convex vs concave) of the FS. In particular, the T^2 term is absent for any quadratic (but not necessarily isotropic) spectrum both in 2D and 3D. The T^2 term is also absent for a convex and simply-connected but otherwise arbitrarily anisotropic FS in 2D. The origin of this nullification is approximate integrability of the electron motion on a 2D FS, where the energy and momentum conservation laws do not allow for current relaxation to leading --second--order in T/E_F (E_F is the Fermi energy). If the T^2 term is nullified by the conservation law, the first non-zero term behaves as T^4. The same applies to a quantum-critical metal in the vicinity of a Pomeranchuk instability, with a proviso that the leading (first non-zero) term in the resistivity scales as T^{\frac{D+2}{3}} (T^{\frac{D+8}{3}}). We discuss a number of situations when integrability is weakly broken, e.g., by inter-plane hopping in a quasi-2D metal or by warping of the FS as in the surface states of Bi_2Te_3 family of topological insulators.Comment: Submitted to a special issue of the Lithuanian Journal of Physics dedicated to the memory of Y. B. Levinso

    Protection of helical transport in Quantum Spin Hall samples: the role of symmetries on edges

    Get PDF
    Time-reversal invariant two-dimensional topological insulators, often dubbed Quantum Spin Hall systems, possess helical edge modes whose ballistic transport is protected by physical symmetries. We argue that, though the time-reversal symmetry (TRS) of the bulk is needed for the existence of helicity, protection of the helical transport is actually provided by the spin conservation on the edges. This general statement is illustrated by specific examples. One example demonstrates the ballistic conductance in the setup where the TRS on the edge is broken. It shows that attributing the symmetry protection exclusively to the TRS is not entirely correct. Another example reveals weakness of the protection in the case where helical transport is governed by a space-fluctuating spin-orbit interaction. Our results demonstrate the fundamental importance of the spin conservation analysis for the identification of mechanisms which may (or may not) lead to suppression of the ballistic helical transport.Comment: Substantially re-written version: improved explanation of the setup, Abstract, and Conclusions; more detailed proof of the main result; re-arranged and substantially extended examples and Supplemental Materials; extended Bibliography; 11 pages, 2 figure
    • …
    corecore