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While it is well-known that the electron-electron (ee) interaction cannot affect the resistivity of a Galilean-invariant Fermi
liquid (FL), the reverse statement is not necessarily true: the resistivity of a non-Galilean-invariant FL does not necessarily
follow a T 2 behavior. TheT 2 behavior is guaranteed only if Umklapp processes are allowed; however, if the Fermi surface
(FS) is small or the electron-electron interaction is of a very long range, Umklapps are suppressed. In this case, aT 2 term
can result only from a combined – but distinct from quantum-interference corrections – effect of the electron-impurity andee
interactions. Whether theT 2 term is present depends on (i) dimensionality [two dimensions (2D) vs three dimensions (3D)],
(ii) topology (simply- vs multiply-connected), and (iii) shape (convex vs concave) of the FS. In particular, theT 2 term is
absent for any quadratic (but not necessarily isotropic) spectrum both in 2D and 3D. TheT 2 term is also absent for a convex
and simply-connected but otherwise arbitrarily anisotropic FS in 2D. The origin of this nullification is approximate integrability
of the electron motion on a 2D FS, where the energy and momentum conservation laws do not allow for current relaxation to
leading – second – order inT/EF (EF is the Fermi energy). If theT 2 term is nullified by the conservation law, the first
non-zero term behaves asT 4. The same applies to a quantum-critical metal in the vicinity of a Pomeranchuk instability, with

a proviso that the leading (first non-zero) term in the resistivity scales asT
D+2

3 (T
D+8

3 ). We discuss a number of situations
when integrability is weakly broken, e. g., by inter-plane hopping in a quasi-2D metal or by warping of the FS as in the surface
states of topological insulators of the Bi2Te3 family. The paper is intended to be self-contained and pedagogical; review of the
existing results is included along with the original ones wherever deemed necessary for completeness.
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1. Introduction

A T 2 scaling of the resistivity with temperature (T )
is considered as an archetypal signature of the Fermi-
liquid (FL) behavior in metals. This result owes its ori-
gin to the Pauli exclusion principle which dictates that,
at low temperatures, only those quasiparticles that re-
side within a width of orderT near the Fermi energy
participate in binary collisions. This argument, how-
ever, applies only to the inverse of the quasiparticle re-
laxation time1/τee but not to the resistivity,ρ, per se:
theT 2 scaling of the former does not necessarily imply
that of the latter. A very simple example is a Galilean-
invariant FL, where the electron-electron (ee) interac-
tion does not affect the resistivity, although1/τee, as
measured, e. g., by thermal conductivity, does scale as
T 2. The reason is that, since velocities of electrons
are proportional to their respective momenta, conserva-
tion of momentum automatically implies conservation

of the electric current. In order to achieve a steady-state
current under the effect of an external electric field, a
momentum relaxation mechanism is needed.

Of course, the FL of electrons in a metal is not
Galilean-invariant. In the presence of lattice, the cur-
rent may be relaxed by Umklapp collisions [1], which
conserve the quasimomentum up to a reciprocal lat-
tice vector: k + p = k′ + p′ + b. Umklapp pro-
cesses are allowed, however, if the incoming electron
momentak andp as well as the momentum transfer
q = k − k′ = p′ − p are all of orderb. These re-
quirements are satisfied (i) if the Fermi surface is large
enough, e. g., at least quarter-filled in the tight-binding
case [2], and (ii) if the interaction is sufficiently short-
ranged. In conventional metals, these two conditions
are easily met due to a large number of carriers and
effective screening of the Coulomb interaction; thus



H.K. Pal et al. / Lith. J. Phys.52, 142–164 (2012) 143

Umklapp collisions occur at a rate comparable to1/τee,
andρ ∝ T 2.

However, there are situations when these conditions
are not met; e. g., the first condition is violated in
systems with low carrier concentration, such as de-
generate semiconductors, semimetals, surface states of
three dimensional topological insulators, etc., and the
second condition is violated when a metal is tuned
to the vicinity of a Pomeranchuk-type quantum phase
transition [3] (QPT), e. g., a ferromagnetic QPT. A
Pomeranchuk-type QPT is aq = 0 instability of
the ground state, manifested by a divergence of long-
wavelength fluctuations of the order parameter. The
effective radius of the interaction mediated by the ex-
change of such fluctuations diverges at the QPT. One
of the consequences of this divergence is the FL break-
down, as manifested by a non-Fermi–liquid (NFL)
scaling1/τee ∝ T γ with γ ≤ 1, but another one is
the concurrent suppression of Umklapp processes.

If Umklapps are suppressed (and the temperature is
too low for the electron-phonon interaction to be effec-
tive), current can be relaxed only via electron-impurity
(ei) collisions. Still, the normal, i. e., momentum-
conserving,ee collisions can affect the resistivity, if
certain conditions are met. The main purpose of this
paper is to summarize and analyze these conditions.
The combined effect of normaleeandei interactions
does not necessarily lead to theT 2 dependence (or its
NFL analog) of the resistivity. Whether this happens
depends on three factors: (i) dimensionality [two di-
mensions (2D) vs three dimensions (3D)], (ii) topology
(simply vs multiply connected), and (iii) shape (convex
vs concave) of the Fermi surface (FS). TheT 2 term is
absent not only for a Galilean-invariant but, more gen-
erally, for an isotropic FL with a non-parabolic spec-
trum, as well as for anisotropic but quadratic spectrum.
In 2D, the conditions are more stringent. In addition
to cases mentioned above, theT 2 term is absent for a
simply-connected and convex but otherwise arbitrarily
anisotropic FS. The reason behind this is that theT 2

term arises from electrons confined to move along the
FS contour such that, for the convex case, momentum
and energy conservations are similar to the 1D case,
where no relaxation is possible.

The issue of an interplay between normalee and
ei interactions has a long history, and it is beyond the
scope of this paper to give a comprehensive review of
the existing literature; some aspects relevant to 3D met-
als are reviewed in Ref. [4]. Very briefly, the first notion
that normal processes can affect the resistivity even in
a single-band metal probably goes back to the paper by

Debye and Conwell [5]. There is also a large body of
work on normal collisions in multi-band metals, fol-
lowing the original paper by Baber [6], both at the phe-
nomenological (reviewed thoroughly in Ref. [7]) and
microscopic [8] levels. That momentum relaxation oc-
curs differently in 2D as compared to 3D was pointed
by Gurzhi, Kopeliovich, and Rutkevich, first for the
electron-phonon [9] and then for theee[10, 11] inter-
actions. Maebashi and Fukuyama [12, 13] analyzed an
interplay between normal and Umklapp collisions for
an anisotropic 2D FS and found that the normal colli-
sions do not give rise to aT 2 term as long as the FS is
convex. Rosch and Howell [14] and Rosch [15] showed
that a similar nullification happens for theω2 term in
the optical conductivity in a disorder-free 2D system.
Chubukov and two of us (D. L. M. and V. I. Y.) gener-
alized the analysis for a NFL near the Pomeranchuk
QPT [16]. Scaling of the resistivity near a convex-to-
concave transition was studied in Ref. [17]. This pa-
per expands on our recent works [16, 17] and provides
some more details.

It is worth noting that the effects studied in this pa-
per occur already within the semiclassical theory of
transport that neglects quantum interference between
eeandei scatterings. Whether semiclassical descrip-
tion makes sense is one of the issues analyzed in the
paper (cf. Sec. 5.1): as a general rule, semiclassi-
cal effects can be considered separately from quantum-
interference ones in the ballistic but not in the diffusive
limit.

The rest of the paper is organized as follows. We be-
gin by formulating the problem in terms of the Boltz-
mann equation (BE) both for the FL and the NFL cases
in Sec. 2. In Sec. 3, we solve the BE perturbatively with
respect toeescattering, which is an adequate approxi-
mation at low enough temperatures, and analyze vari-
ous stituations mentioned above. In Sec. 4, we discuss
the opposite limit of high temperatures, when theee
contribution to the resistivity saturates, and show that a
true scaling regime, with an appreciable difference be-
tween the low and high temperature limits of the resis-
tivity, does not exist in a single-band metal (Sec. 4.1).
Such a regime is shown to exist for a two-band metal
with very different masses (Sec. 4.2). In Sec. 5, we
analyze the limits of the validity of the results based
on the semi-classical BE with respect to both quantum
(Sec. 5.1) and classical (Sec. 5.2) correlations between
eeandei interactions. Our concluding remarks are pre-
sented in Sec. 6.
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2. Boltzmann equation: Generalities

2.1. Collision integral

The most straightforward way to find the effect of
the ee interaction on the conductivity in the semi-
classical regime is via the Boltzmann equation (BE)
which, for the case of a time-independent and spatially-
uniform external electric fieldE, reads

−eE · ∂fk

∂k
= −Iei [fk]− Iee [fk] , (1)

where−e is the electron charge andfk is the distri-
bution function. The collision integralsIee andIei on
the right-hand side describe the effects of theeeandei
interactions, respectively. Explicitly,

Iei =
∫
k′

wk′k (fk − fk′) δ (εk − εk′) , (2)

and

Iee =
∫
p

∫
p′

∫
k′

Wk,p→k′p′δ
(
εk + εp − εk′ − εp′

)
× δ

(
k + p− k′ − p′

)
[fkfp (1− fk′)

(
1− fp′

)
− fk′fp′ (1− fk) (1− fp)] ,

(3)

where
∫
k is a short-hand notation for

∫ dk
(2π)D , andwk,k′

andWk,p→k′p′ are theei and ee scattering probabil-
ities, correspondingly. For a weak electric field, the
left-hand side of the BE reduces toevk · En′k, where
vk is the electron group velocity andnk ≡ n(εk) is
the equilibrium distribution function, with prime denot-
ing a derivative with respect to the electron energy,εk

(measured from the Fermi energy). Linearizing theee
collision integral on the right-hand side with respect to
the non-equilibrium correction tonk, defined as

fk = nk − Tn′kgk = nk + nk (1− nk) gk , (4)

one obtains [2]

Iee =
∫
p

∫
p′

∫
k′

Wk,p→k′p′

×
(
gk + gp − gk′ − gp′

)
nknp (1− nk′)

(
1− np′

)
× δ

(
k + p− k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
. (5)

2.2. Pomeranchuk quantum criticality

In addition to the case of a generic FL, we will be
also interested in a special but widely studied case of
a FL near a Pomeranchuk-type QPT [3], which breaks
the rotational symmetry and/or topology of the FS but
leaves the translational symmetries intact. Examples of

such a QPT include ferromagnetic and electronic ne-
matic transitions [18]. As opposed to, e. g., charge-
density waves and antiferromagnets, both the ordered
and disordered phases are spatially uniform, and the
transition is manifested via the divergence of certain
susceptibility atq = 0. Therefore, critical fluctua-
tions near the QPT are long-ranged, and the effective
interaction among electrons, mediated by these fluctu-
ations, is of a long range as well. Since a FL is, in gen-
eral, unstable with respect to long-range interaction, the
quantum-critical region of the phase diagram near the
QPT is characterized by manifestly non-Fermi liquid
(NFL) properties, such as a divergence of the specific
heat coefficient. However, the long-range nature of the
effective interaction has another aspect; namely, small-
angle scattering at critical fluctuations effectively pro-
hibits Umklapp processes which, in the absence of dis-
order, are necessary to render the resistivity finite [16].
Therefore, theeecontribution to the resistivity can re-
sult only from an interplay betweenei and normalee
collisions.

In this Section, we briefly summarize the proper-
ties of the simplest model describing a QPT of the
Pomeranchuk type: the Hertz-Moriya-Millis (HMM)
model [19–21]. In this model, electrons are assumed to
interact via an effective potential proportional to the di-
vergent susceptibility of the order parameter. Details of
the effective interaction depend on whether instability
occurs in the charge or spin channel but, for our pur-
poses, it suffices to model the interaction by a scalar
function

Ueff (q, ω) =
ν−1

F

δ + a2q2 − iω
vF q

, (6)

whereνF is the density of states,δ > 0 is the “dis-
tance” to the critical point along the axis of the con-
trol parameter (pressure, doping, etc.), anda is the ra-
dius of interaction in the critical channel. Since (6) can
be derived, strictly speaking, only in the random-phase
approximation, one needs to require thatkF a � 1
(Ref. [22, 23]). [Alternatively, one can assume that
the coupling between electrons and critical fluctuations
is weak [24, 25]; results of these two approaches dif-
fer only by re-definition of parameters.] The imagi-
nary part ofUeff results from Landau damping of crit-
ical fluctuations by itinerant electrons. The correlation
length of critical fluctuationsξ = a/

√
δ diverges at the

QPT, whereδ = 0.
For the interaction in Eq. (6), the inverse quasipar-

ticle lifetime (the imaginary part of the self-energy)
behaves as1/τee ∝ T 2 for T � TFL ≡ vF a2/ξ3
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and as1/τee ∝ TD/3 for T � TFL. The energy
scaleTFL separates the FL and NFL regions of the
phase diagram. Since the momentum transfers are
small in both regions (̄q ∼ ξ−1 for T � TFL and
q̄ ∼ (ω/vF a2)1/3 ∼ (T/vF a2)1/3 for T � TFL),
the transport scattering time is longer than the life-
time: 1/τ tr

ee ∼ (1/τee) (q̄/kF )2. In the NFL region,
1/τ tr

ee ∝ T (D+2)/3; in the FL regime,1/τ tr
ee ∝ T 2 with

a small prefactor [26]. The conventional wisdom was
that “transportization” of the relaxation time was the
only manifestation of the long-range nature of the inter-
action, so that the resistivity could simply be obtained
by substituting the transport time into the Drude for-
mula [26, 27]. This yieldsρ ∝ T 5/3 andρ ∝ T 4/3 in
the NFL regions in 3D and 2D, correspondingly. The
5/3 scaling of the resistivity is indeed close to what
has been observed experimentally in a number of itin-
erant ferromagnets near a QPT [28–30]. The reason-
ing tacitly assumes, however, that Umklapp collisions
are still present, and occur at a rate comparable to that
for normal ones, so that the transport time for normal
collisions gives a reasonable estimate for the Umklapp
scattering time. As we have already pointed out at the
beginning of this Section, this assumption is not sat-
isfied for a long-range interaction. In the next Section,
we will quantify this statement. Before we proceed fur-
ther, some general comments on the HMM model are
in order.

First, we are going to use the BE even in the NFL
region of the QPT, where quasiparticles are not well
defined, i. e., when1/τee � T . This seems to be incon-
sistent with the general criterion of the validity of the
BE [31]. However, well-defined quasiparticles are not
required for the BE to be valid in a special case, when
the effectiveeeinteraction can be treated in the Migdal-
Eliashberg approximation, i. e., when the self-energy
depends on the electron energy but not the momentum
and vertex corrections are small. In this case, the BE
can be derived in the Keldysh technique without any
conditions on the parameterτeeT , as long as a much
weaker conditionτeeεF � 1 is satisfied [32]. This ar-
gument, formulated first by Prange and Kadanoff for
the electron-phonon interaction [33], was used later by
a number of researchers in a wider context [34], and
also applicable to NFL systems, given that they allow
Migdal-Eliashberg description. Having said that, we
come to the second point, which is that the Migdal-
Eliashberg treatment of the HMM model, thought pre-
viously to be controllable at least in the1/N approxi-
mation [24, 25], has recently been shown to break down
beyond the second loop order [35–38]. While acknowl-

Fig. 1. (a) Umklapp process for a long-range electron-electron in-
teraction. One of the electrons (with initial momentumk) is scat-
tered by a small angle via theee interaction, while another one
(with initial momentump) is scattered by the lattice all the way
across the Brillouin zone. (b) Umklapp processes for large mo-
mentum transfer. The original FS is in the center. Reprinted from

Ref. [16], courtesy of the APS.

edging this problem, we remark that the processes re-
sponsible for this breakdown are effectively 1D-like
scattering events, in which both the initial and final
fermions move along the same line. Although these
processes are dangerous for the single-particle self-
energy, their contribution to the conductivity should be
reduced by at least the “transport factor”, which dis-
criminates against small-angle scattering.

Once the BE is adopted, the difference between the
FL and NFL regimes becomes formal: the dependence
of the eescattering probability on the energy transfer
may be neglected in the former but not in the latter.

2.3. Matrix elements on a lattice: normal vs Umklapp
processes

The interaction potential between electrons on a lat-
ticeU (r1, r2) depends on the coordinates of two elec-
trons separately rather than on their relative coordinate;
transforming to the center-of-mass and relative coor-
dinates givesU (r1, r2) = U

(
r1 − r2,

r1+r2
2

)
, where

U is a periodic function ofr1+r2
2 but not ofr1 − r2.

(The time-dependence of the effective interaction is not
essential for the analysis below, and will be omitted.)
Consequently,

U (r1, r2) =
∫
q

∑
b

e−iq·(r1−r2)e−ib·(r1+r2)/2 U(q,b) ,

(7)
whereb is the reciprocal lattice vector and the vol-
ume of the system is put to unity. The matrix
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element ofU on the Bloch wave functionsΨk (r) =∑
b uk (b) ei(k−b)·r reads

Mkp→k′p′ =
∑

b,b1...b4

δk−k′+b1−b2,p′−p+b3−b4

× u∗k′ (b1) uk (b2) u∗p′ (b3) up (b4)

× U
(
k− k′ + b1 − b2 − b/2,b

)
. (8)

Now we consider a long-range interaction, relevant for
a FL near the Pomeranchuk instability. In this case, the
matrix element is non-negligible only if the first argu-
ment ofU is as small as possible, which means that
b = 2(b2 − b1) andk ≈ k′:

Mkp→k′p′ =
∑

b1...b4

δk−k′+b1−b2,p′−p+b3−b4

× u∗k′ (b1) uk (b2) u∗p′ (b3) up (b4)

× U
(
k− k′, 2(b2 − b1)

)
. (9)

We see that the condition for an Umklapp process be-
comes very stringent [16]: sincek ≈ k′, the momen-
tum conservation conditionk − k′ = p′ − p + b̄ can
only be satisfied at special points, wherep′−p ≈ b̄ and
b̄ ≡ b4−b3 +b1−b2 is just another reciprocal lattice
vector. As Fig. 1a shows, this is only possible ifp and
p′ are located at the edges of the Brillouin zone (and
the FS is open). The volumes (areas) around the special
points are small – in proportion to a small momentum
transferq̄. The corresponding scattering rate is smaller
than thetransport rate ofeecollisions by a factor of
q̄D. For HMM criticality, whereq̄ ∝ T 1/3, this implies
that the contribution to the resistivity from the process
depicted in Fig. 1a scales asT 2(D+1)/3, i. e., asT 8/3 in
3D and asT 2 in 2D. In both cases, the exponents are
larger or equal than2. This means that the NFL contri-
bution to the resistivity is smaller (3D) or comparable
(2D) to the FL (T 2) contribution, arising from Umk-
lapp scattering in the channels that are not affected by
the proximity to a QCP, e. g., from the charge channel
in the vicinity of a magnetic instability. In addition,
processes in Fig. 1a are, in fact, “pseudo-Umklapps”
because they can be viewed as normal processes on
a closed (hole) FS. The “real” Umklapps, shown in
Fig. 1b, can occur only if the constraint of small mo-
mentum transfer is relaxed or else, near half-filling,
when the “gap” between the FS and the edges of the
Brillouin zone is small. Half-filling, however, is more
likely to result in a finite-q instability of the ground

state, e. g., antiferromagnetism, rather than in a Pomer-
anchuk QTP. From now on, our analysis will be focused
on normaleecollisions, the matrix element of which is
given by Eq. (9) withb1 − b2 = b3 − b4. The cor-
responding scattering probability, averaged over spins
of the initial states and summed over spins of the final
states, reads

Wkp→k′p′ =

1
4

∑
ijγδ

∣∣∣δαγδβδMkp→k′p′ − δαδδβγMkp→p′k′

∣∣∣2 =

∣∣∣Mkp→k′p′

∣∣∣2 +
∣∣∣Mkp→p′k′

∣∣∣2
− Re

(
Mkp→k′p′M∗

kp→p′k′

)
. (10)

Wkp→k′p′ has certain symmetries. First, we assume
the microreversibility property

Wkp→k′p′ = Wk′p′→kp . (11)

In addition, since electrons are indistinguishable,

Wk,p→k′p′ = Wkp→p′k′ = Wpk→k′,p′ = Wpk→p′k′ .
(12)

Finally, combining (11) and (12), we obtain

Wkp→k′p′ = Wk′p′→kp = Wp′k′→pk . (13)

With only normaleecollisions taken into account,
the total electron momentum is conserved, i. e.,∫

k
kIee = 0 . (14)

Notice that althoughIei is written down in its most
general form that holds true as long aswk,k′ obeys uni-
tarity [31, 39, 40], in writing downIee we have already
assumed thatWk,p→k′p′ obeys the microreversibility
condition (11).

2.4. General properties of the solution

Before proceeding with a more detailed analysis of
the BE, we make a few general comments.

1. “Hidden” phonons. The linearized form of
the steady-state BE assumes implicitly that the
electron-phonon interaction is also present in the
system; otherwise, the total electron energy will
increase indefinitely due to the work done by
the electric field. As usual (see, e. g., Ref. [7]),
we assume that the temperature is low enough
so that one can neglect a direct electron-phonon
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contribution to the resistivity (which requires that
τeph � τee, τei, whereτ ’s are the transport scat-
tering times for corresponding processes) but high
enough so that, for a fixed electric field, the
electron-phonon interaction can still equalize the
electron and lattice temperatures (which requires
that the work done by the electric field on the en-
ergy relaxation length is much smaller than the
temperature).

2. Parity of a non-equilibrium part of the distri-
bution function. A linear inE term infk can be
written as

δfk ≡ fk − nk = −Ak ·ETn′k , (15)

whereAk contains explicitly only the effects of
the ee and ei interactions. At low enough tem-
peratures (as specified in the previous paragraph),
the electron-phonon interaction shows up only in
the next – quadratic – term and does not affect the
resistivity directly. At even lower temperatures,
when τee � τi, ee scattering can be treated as
a perturbation toei scattering. In this case,Ak

is determined by the crystal symmetry and by the
ei scattering probability and, without specifying
both of them, no properties ofAk can be further
inferred. However, if theei scattering probability
satisfies the microreversibility condition [7], i. e.,
wk,k′ = wk′,k, then Ak is odd in k. Indeed,
reversing the sign ofk in the BE and relabeling
k′ → −k′, we obtain

evk ·En′k =
∫
k′

w−k′,−k (f−k′−f−k) δ (εk−εk′) .

(16)
Using time-reversal symmetrywk,k′ =w−k′,−k

(which is guaranteed in the absence of the mag-
netic field and magnetic order) and microre-
versibility, we see thatA−k = −Ak. This is the
property of the non-equilibrium distribution func-
tion we will be using later on. To simplify the
presentation, we will first use a model form of the
ei collision integral, namely, a relaxation-time ap-
proximationIei = (fk − nk) /τi, (cf. comment
in Ref. [41]), which allows for a closed-form so-
lution, and then extend the proof for the general
form of fk given by Eq. (15).

However, one has to keep in mind that, beyond
the Born approximation, microreversibility is not
a general principle but a consequence of two mi-
croscopic symmetries, i. e., symmetries with re-

spect to time– and space-inversions, and is thus
absent in non-centrosymmetric systems [42].

3. No disorder – no steady-state linear-response
regime. Since the momentum is conserved in nor-
mal collisions, the collision integral (5) is nullified
by a combinationB · k, whereB isk-independent
but otherwise arbitrary. This means that there is no
unique steady-state solution in the linear-response
regime. Obviously, the steady-state solution is ab-
sent because the total momentum of the electron
system (per unit volume),K =

∫
k kfk, increases

with time. Indeed, restoring the time and spatial
derivatives in the BE, multiplying it byk and in-
tegrating overk we obtain

∂Ki

∂t
+

∂Πij

∂xj
= e

∫
k

ki
∂fk

∂kj
Ej , (17)

whereΠij =
∫
k kivjfk. Integrating by parts in

the right-hand side and taking into account that the
number densityN =

∫
k fk, we obtain

∂Ki

∂t
+

∂Πij

∂xj
= −eNEi . (18)

The left-hand side is just the continuity equation
while the right-hand side is the total force per unit
volume. Therefore, although the electron liquid
is not, generally speaking, Galilean-invariant, it is
accelerated as a whole by the electric field. (In a
crystal, an increase of the momentum in time leads
to Bloch oscillations of the current; the current av-
eraged over time is equal to zero.) Therefore, one
needs to invoke impurity scattering in order to ren-
der the problem well-defined [43].

4. No lattice – noT 2 term in the resistivity. Adding
just disorder but no lattice does not give rise to a
T 2 term in the resistivity. Notice that this state-
ment is weaker than “theee interaction does not
effect the resistivity at all”, which is true ifwk′,k

depends only on the scattering angle but not on the
electron energy. The simplest case is that of point-
like impurities, whenwk,k′ = 1/ν(εk)τi, where
ν(εk) is the density of states (per one spin com-
ponent) andτi is a constant. In this case, the BE
reduces to

−evk ·En′k = −fk − f̄

τi
− Iee , (19)

wheref̄ is an average offk the directions ofk. In
the absence of lattice,k = mv and hence the elec-
tric currentj = −2e

∫
k vfk = −(2e/m)

∫
k kfk.

Now one can multiply the BE equation byv and
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integrate overk, upon whichIee – in accord with
(14) – drops out, and obtain a relation betweenj
andE directly, without solving forfk:

−e

∫
k
vk(vk ·E)n′k =

m

2eτi
j . (20)

The resuling conductivityσ = ne2τi/m does not
contain any effects of theeeinteraction, except for
FL renormalizations ofm andτi.

The same is true if the scattering probability de-
pends only on the angle betweenk andk′. Param-
eterizingwk,k′ as

wk,k′ = w̄
(
εk, k̂ · k̂′

)
/ν(εk) , (21)

we expandfk andw̄
(
εk, k̂ · k̂′

)
over a complete

basis set of, e. g., Legendre polynomials in 3D:

fk =
∑

`

f{`}(εk)P`(cos θ) ,

w̄ =
∑

`

w̄{`}(εk)P`(cos θ)P`(cos θ′)+Wo , (22)

whereθ (θ′) is the angle betweenE andk (k′), and
Wo is an odd function of the polar angles that van-
ishes when substituted into the collision integral.
In terms of angular harmonics, the BE reduces to

−evk ·En′k = −
∑

`

f{`}

τ{`}(εk)
P(cos `θ)−Iee

(23)
with

1

τ
{`}
i (εk)

≡ w̄{0}(εk)− 1
2` + 1

w̄{`}(εk) . (24)

If τ
{`}
i (εk) does not depend on the electron en-

ergy, one proceeds in the same way as for point-
like impurities, i. e., one obtains a direct relation
betweenj andE by multiplying (23) byv and in-
tegrating overk. The resulting (Drude) conduc-
tivity σ = ne2τ tr

i /m contains the transport time

τ tr
i ≡ τ

{1}
i but no effects of theee interaction

(again, up to FL renormalizations).
If w̄ does depend on the electron energy, as

it is often the case for semiconductors, the inte-
gral

∫
k kIei does not reduce to the electric current,

and one needs to solve forfk in order to find the
conductivity. Since theee interaction affectsfk,
the conductivity is also affected. However, as we
show in Sec. 3.3.3, this effect leads only to aT 4

term in the resistivity (orT 4 lnT in 2D).

3. Electron-electron contribution to the resistivity

3.1. Do normaleecollisions affect the resistivity?

It may seem that the reverse statement to the head-
ing of item #4 in the previous Section (“no lattice – no
T 2 term in the resistivity”) should be “aT 2 term in the
resistivity occurs in the presence of both disorder and
lattice”. Indeed, while disorder takes care of momen-
tum relaxation, lattice breaks the Galilean invariance.
As a result,vk = ∂εk/∂k 6= k/m, which means that
momentum conservation does not imply current con-
servation, and one cannot obtain a relation between the
current and the electric field without actually solving
the BE. In general, therefore, one should expect aT 2

term in the resistivity. While it is really the case in 3D,
it turns out that the conservation laws in 2D forbid the
T 2 term for a convex and simply-connected but other-
wise arbitrary FS.

3.2. Low temperatures: Perturbation theory

In this subsection, we discuss the case of low tem-
peratures, when theeecollisions are less frequent than
the ei ones. In this case, theee contribution can be
found via the perturbation theory with respect toIee.
We begin with the simplest – isotropic – model for
electron-impurity scattering, when the BE is given by
(19). However, we keep the dependence of theei relax-
ation time on the electron energy for the time being.

At the first step, we solve (19) withIee = 0, which
yields

g
(1)
k = eτi (εk)vk·E/T . (25)

Next, we substituteg(1)
k back into (19) and find a cor-

rection due toIee

g
(2)
k =

τi (εk)
Tn′k

Iee

[
g
(1)
k

]
. (26)

The corresponding correction to theij component of
the conductivity tensor is given by

δσij = −2
e2

T

∫
dDq

(2π)D

∫ ∫ ∫
dωdεkdεp

×
∮ ∮

dak

vk

dap

vp
Wk,p (q, ω) `i

k∆`jn (εk) n (εp)

× [1− n (εk − ω)] [1− n (εp + ω)]

× δ (εk − εk−q − ω) δ (εp − εp+q + ω) . (27)



H.K. Pal et al. / Lith. J. Phys.52, 142–164 (2012) 149

Here,q ≡ k − k′ = p′ − p is the momentum trans-
fer, dak is the surface (line) element of an isoenergetic
surface (contour) at energyεk in 3D (2D), and∆` ≡
τi(εk)vk+τi(εp)vp−τi(εk−ω)vk−q−τi(εp+ω)vp+q

is a vector measuring the change in the total “vector
mean free path”̀ k ≡ vkτi(εk) due toeecollisions.
The energy transfer was introduced by re-writing the
energy conservation law asδ

(
εk + εp − εk′ − εp′

)
=∫

dωδ (εk − εk′ − ω) δ
(
εp − εp′ + ω

)
. The scattering

probability Wk,p(q, ω) ≡ Wk,p→k−q,p+q is now al-
lowed to depend onω. Using the symmetry properties
of Wk,p(q, ω), one can cast (27) into a more symmetric
form

δσij = − e2

2T

∫
dDq

(2π)D

∫ ∫ ∫
dωdεkdεp

×
∮ ∮

dak

vk

dap

vp
Wk,p (q, ω) ∆`i∆`jn (εk) np (εp)

× [1− n (εk − ω)] [1− n (εp + ω)]

× δ (εk − εk−q − ω) δ (εp − εp+q + ω) . (28)

Now let us count the powers ofT in (28). Each of the
three energy integrals (overω, εk, andεp) gives a fac-
tor of T which, in a combination with the overall1/T
factor, already gives aT 2 dependence, as is to be ex-
pected for a FL. TheT 2 result holds as long as the inte-
gral overq does not introduce additionalT dependence.
This is the case in the FL regime, when typicalq are of
order of the ultraviolet cutoff of the problem, i. e., the
smallest of the three quantities: the reciprocal lattice
vector, a typical size of the FS, and the inverse radius
of theeeinteraction. In this case, theω dependence of
Wk,p (q, ω) can be neglected. The energy dependence
of τi contributes only to higher order terms inT and we
neglect it for the time being as well, so that∆` = τi∆v
with

∆v = vk + vp − vk−q − vp+q (29)

being the change in the electron current due toeecol-
lisions. Finally, since the integrals of the combinaton
of the Fermi functions over energies already produce a
factor ofT 2, electrons can be projected onto the FS in
the rest of the formula. This means that one can drop
ω in bothδ-functions and perform the surface integrals
over the FS.

We pause here to remark that neglectingω in the
δ-functions doesnot mean performing an expansion in
ω/εk, ω/εp, etc. In fact, all quasiparticles energies (εk,
εk−q, etc.) are equal to zero because the electrons were

projected onto the FS! What it really means is that the
δ-functions impose constraints on the angles betweenk
andq (andp andq) with electrons’ momenta being on
the FS. Typical values of these angles are determined
by the ratio of typicalq (≡ q̄) to kF . In a system
with a short-range interaction,̄q ∼ min{kF , 1/a0},
wherea0 is the lattice spacing; therefore, typical an-
gles are of order unity. On the other hand, typicalω

(≡ ω̄) are of orderT , and corrections to angles due to
finite ω are small as long asT � min{εF ,W}, where
W is the bandwidth; the last condition is implied any-
how to be in the FL regime. If the interaction radius,
r0, is much longer than both the lattice spacing and
the Fermi wavelength,̄q is small but in proportion to
1/r0 rather than toT , while ω̄ is still of orderT . This
means that effective ultraviolet energy scale is reduced
to vF /r0, and the FL description is valid only at low
energies, where the effect of a finite energy transfer on
the kinematics of collisions is negligible. This can be
illustrated for a simple example of the quadratic spec-
trum, when the angle between, e. g.,k andq, satisfies
cos θk,q = (q2/2m+ω)/vF q. Neglectingω is justified
as long asT � q̄2/2m. Notice that this simplification
is valid even near QPT (cf. Sec. 2.2), where the scal-
ing dimensions ofω and q̄ are different: ω̄ ∼ T but
q̄ ∝ T 1/3. A characteristic temperature, below which
the conditionω̄ ∼ T � q̄2/2m ∝ T 2/3 is satisfied,
coincides with the scale below which the quasiparticle
description breaks down, which is the regime of main
interest for quantum phase transitions.

As another remark, typicalq may be different for dif-
ferent observables. What we said above is true for the
leadingterm in theeecontribution to the electrical con-
ductivity in all dimensionsD > 1, because the smallq

behavior of the integrand in (28) is regularized by the
∆`i factors that vanish in the limit ofq → 0. (This is
analogous to the regularizing effect of the1 − cos θ

factor in a transport cross-section for elastic scatter-
ing.) However, when calculating the single-particle
lifetime (the imaginary part of the self-energy) [44, 45]
and thermal conductivity [46] in 2D, one runs into in-
frared logarithmic divergences, which means that the
infrared region of the momentum transfers (q ∼ T/vF )
does contribute to the result. In those cases, neglecting
ω in the δ-functions is not justified. (The subleading
terms in the conductivity also require more care; see
Sec. 3.3.3 below.)

Coming back to the main theme, we focus now on
the FL case, when one can also neglectω in the scat-
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tering probability. After all these simplifications, the
diagonal component of the conductivity reduces to

δσii = − e2

2T
τ2
i

∫
dDq

(2π)D

∫ ∫ ∫
dωdεkdεp

×
∮ ∮

daF
k

vF
k

daF
p

vF
p

Wk,p (q, 0) (∆vi)2

× n (εk) n (εp) [1− n (εk − ω)] [1− n (εp + ω)]

× δ (εk − εk−q) |εk=0δ (εp − εp+q) |εp=0 , (30)

where superscriptF indicates that the corresponding
quantity is evaluated at the FS. Now the integrals over
all energies can be performed with the help of an iden-
tity

1
T

∫
dε1

∫
dε2

∫
dωn (ε1) n (ε2) [1− n (ε1 − ω)]

× [1− n (ε2 + ω)] =
2π2

3
T 2, (31)

and we obtain aT 2 term in the conductivity with a pref-
actor given by a certain average over the FS

δσii =

− π2

3
e2τ2

i T 2
∫

dDq

(2π)D

∮ ∮
daF

k

vF
k

daF
p

vF
p

Wk,p (q, 0)

× (∆vi)2δ (εk − εk−q) |εk=0δ (εp − εp+q) |εp=0 .

(32)

Clearly, whether the leading correction to the resid-
ual conductivity indeed scales asT 2 depends on wheth-
er the integral over the FS is nonzero. Since the inte-
grand is positive, the integral may vanish only if∆v =
0 under the energy conservation constraints imposed by
theδ- functions. As a simple check, we apply Eq. (32)
for the Galilean-invariant case, whenvk = k/m. In
this case,∆v = 0, as it should be.

We now consider a more general situation, when the
ω dependence of the scattering probability is important,
which is the case, e. g., near a QPT. In this case only
two out of the three energy integrals can be performed
explicitly and, instead of Eq. (32), we obtain

δσii = −e2τ2
i T 2

2

∫
dDq

(2π)D

∮ ∮
daF

k

vF
k

daF
p

vF
p

Rk,p (q)

× [∆vi]2δ (εk−εk−q) |εk=0δ (εp−εp+q) |εp=0 , (33)

where

Rk,p (q) ≡∫
dω
(
ω2/T 3

)
Wk,p (q, ω) N(ω) [N(ω) + 1] (34)

andN(ω) is the Bose function. For the effective inter-
action from Eq. (6) at the QPT (δ = 0), power counting
of (33) givesδσii ∝ T (D+2)/3, which coincides with
the estimate based on the transport time (cf. Sec. 2.2).
As in the FL case, however, one needs to make sure that
the prefactor is non-zero.

3.3. Cases when the leading term vanishes

3.3.1. Isotropic system with an arbitrary spectrum
The first case is that of an isotropic but otherwise

arbitrary energy spectrum. Such a situation may arise
due to relativistic effects. Another (pseudo-relativistic)
example is weakly doped graphene with a negligibly
small trigonal warping of the FS. Sinceεk is a function
of |k| only, theδ-function constraints in Eq. (32) imply
that|k| = |k− q| and|p| = |p + q|. Then,

vj
k = 2

∂εk

∂(k2)
kj = ξ(k)kj ,

vj
k−q = 2

∂εk

∂(k2)

∣∣∣∣
|k−q|=|k|

× (kj−qj) = ξ(k)(kj−qj) ,

(35)

whereξ(k) ≡ vk/k. Notice that the second line in
Eq. (35) is not an expansion in smallq but an exact
relation. Substituting Eq. (35) (and similar expressions
for vj

p and vj
p+q) into ∆v, it is easy to see that∆v

vanishes identically. Thus, there is noT 2 correction to
the resistivity of a non-Galilean-invariant but isotropic
system. This result also holds for a general quadratic
spectrumεk = kikj/2mij , in which casevj = ki/mji

and∆vj = 0.
Notice that, in contrast to the Galilean-invariant case

(with εk = k2/2m − εF ), when not only theT 2 term
but all higher order terms are absent, higher order (T 4,
etc.) terms are non-zero for a non-parabolic spectrum.

3.3.2. Approximate integrability: Convex and simply
connected Fermi surface in 2D

Kinematics of ee collisions on a circular FS. The
fact that T 2 term in the resistivity is absent for an
isotropic FS does not mean that it is necessarily present
for an anisotropic FS. In fact, theT 2 term is also ab-
sent for a simply-connected and convex but otherwise
arbitrary FS in 2D [10–13, 16]. Before considering the
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Fig. 2. Isotropic case in 2D: three possible scattering processes none of which leads to current relaxation.

general case, however, let us study the simplest exam-
ple of such a FS, i. e., a 2D circular FS with quadratic
spectrum. Since this is just a Galilean-invariant case,
we already know (cf. Sec. 2.4) that theee interaction
has no effect on the resistivity. However, it is instruc-
tive to see in a geometrical way how theT 2 term van-
ishes – this will be useful for the subsequent analysis
of the general case in 2D. Geometrically, one needs to
find two initial momenta,k and p, belonging to the
FS, such that the final momenta,k − q and p + q,
also belong to the FS. As shown in Fig. 2, only three
situations are possible [47]: (i) Cooper channel, when
the total initial and, therefore, the total final momentum
is equal to zero; (ii) swapping of velocities, when the
initial momentum of one the electrons coincides with
the final momentum of another electron andvice versa,
i. e., p = k − q; (iii) no scattering – this is the trivial
case where the initial and final momenta of individual
electrons are the same. For all of these cases,∆v = 0
and thus theT 2 term is absent. To see that these situa-
tions indeed exhaust all the possibilities, one can solve
the momentum and energy conservation equations, i. e.,
k − k′ = p′ − p = q andk2 = k′2, p2 = p′2, subject
to the additional constraintk = p = k′ = p′ = kF .
This leads to two equations:q2 − 2kq cos θkq = 0
andq2 + 2pq cos θpq = 0, whereθij denotes the angle
between the vectorsi and j. The three possible solu-
tions are: θkq − θpq = π, corresponding to case (i);
θkq + θpq = π, corresponding to case (ii); andq = 0
for arbitraryθkq andθpq , corresponding to case (iii).

Kinematics of eecollisions on a generic convex FS.
The situation described above is not specific to a cir-
cular FS in 2D but occurs also for a generic convex
FS, see Fig. 3a. Indeed, introducing a new variable
p̄ = −p in (32) and using the time-reveral symmetry

(ε−p = εp) and symmetries of the scattering probabil-
ity, we obtain

δσii =

−π2

3
e2T 2τ2

i

∫
d2q

(2π)2

∮ ∮
daF

k

vk

daF
p̄

vp̄
Wk,p̄ (q,0)

×
[
vi

k − vi
p̄ − vi

k−q + vi
p̄−q

]2
× δ (εk − εk−q) δ (εp̄ − εp̄−q) . (36)

For givenq, we must find two momenta satisfying the
relationsεk = εk−q andεp̄ = εp̄−q. Geometrically,
finding the solution to these two equations is equiva-
lent to shifting the FS byq, and finding the points of
intersection between the original and the shifted FSs.
A convex FS has at most two self-intersection points.
Therefore, the equationεk = εk−q has only two solu-
tions. In addition, ifk is a solution, then−k+q is also
a solution so that the roots of the first equation form
a set{k,−k + q}. Since the second equation is the
same, its two roots{p̄,−p̄ + q} = {−p,p + q} must
coincide with the roots of the first equation. This can
happen if 1)k = −p, which gives the Cooper channel
or if 2) k = p + q which gives swapping. The situa-
tion with q = 0, when no scattering occurs, is trivially
possible. For all the scattering processes listed above,
∆v = 0 and theT 2 term vanishes.

Being purely geometrical, the preceding analysis is
equally valid for the NFL case, with the conclusion that
theT 4/3 term vanishes as well.

Beyond the relaxation-time approximation.
Although the analysis above was based on Eq. (36), ob-
tained in the relaxation-time approximation forei scat-
tering, it can be readily extended for the general form of
theei collision integral in Eq. (2). The non-equilibirum
part of the distribution function in the presence ofei
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scattering only is given by (15), which implies thatg
(1)
k

in (4) is replaced byg(1)
k = Ak · E. The lowest-order

iteration ineescattering is to be found from an integral
equation

Iei[g
(2)
k ] =

1
Tn′k

Iee[Ak ·En′k] . (37)

The ei collision integral can be viewed as an integral
operator, the inverse of which is defined by

Î−1
ei [fk] ≡

∑
k̂

Ok,k′fk′ , (38)

wherek̂ ≡ k/k. Thanks to microreversibility,Ok,k′ =
Ok′,k. A formal solution of (37) is

g
(2)
k =

1
Tn′k

Î−1
ei Iee[Ak ·E] . (39)

Using the microreversibility property ofOk,k′ and the

fact thatAk is odd ink, it is easy to see thatg(2)
k is

odd in k as well. This is all one really needs to re-
peat the steps of the previous analysis. The correc-
tion to the conductivity now contains a combination
∆vi∆Aj , where∆A ≡ Ak + Ap −Ak′ −Ap′ . Be-
ing odd in all momenta,∆A behaves in the same way
as∆v upon the changep → −p. The scattering pro-
cesses are classified in the same way as before, and the
vanishing of theT 2 term follows from the vanishing of
∆v.

Approximate integrability. A limited number of
possible outcomes of theeecollisions means that our
2D system behaves similar to a 1D system, where bi-
nary collisions do not lead to relaxation. The anal-
ogy works because, to find the leading (T 2) term in
the conductivity, it suffices to project electrons onto the
FS, which is a line in 2D. Therefore, kinematics ef-
fectively becomes 1D and, although this is a 2D case,
we have an integrable system. However, this analogy
has certain limitations. First, the 2D case is integrable
only with respect to charge but not thermal current re-
laxation, whereas there is no relaxation of all physical
quantities in 1D. Second, even the charge current relax-
ation is absent only up to next-order-terms inT/εF (see
Sec. 3.3.3). Third, not any FS line in 2D is integrable:
concave and multiply-connected contours behave in a
non-integrable way. With all these limitations in mind,
we will refer to the 2D convex case as to “approximate
integrability”.

3.3.3. Subleading corrections to the resistivity when
the leading term is absent

Fig. 3. (a) A convex contour has at most two self-intersection points
(marked by dots). (b) A concave contour can have more than two

self-intersection points (six in the example shown).

Higher order term from electrons away from the
FS. To find the subleading correction for the case
considered in the previous section, we go back to
Eq. (28), replace againτi by a constant in the scat-
tering probability, but now, instead of neglectingω
in the δ functions, expand the product of theδ func-
tions to second order inω. The zeroth-order term,
δ (εk − εk−q) δ (εp − εp+q), nullifies ∆vi. The odd
in ω terms vanish upon integration overεk,εp, andω.
In the FL case, this gives

δσii =
1
2

e2

T
τ2
i

∫
dDq

(2π)D

∫ ∫ ∫
dωω2dεkdεp

×
∮ ∮

dak

vk

dap

vp
Wk,p (q, 0)

[
∆vi

]2
n (εk) n (εp)

× [1− n (εk − ω)] [1− n (εp + ω)]

×
{

δ′ (εk−εk−q) δ′ (εp−εp+q)− 1
2
[δ′′ (εk−εk−q)

× δ (εp−εp+q)+δ (εk−εk−q) δ′′ (εp−εp+q)]
}

. (40)

The derivatives of theδ-functions produce the same
roots fork andp as theδ-functions themselves. How-
ever, integrating by parts, we make the derivatives to
act on

[
∆vi

]2
. Although

[
∆vi

]2 vanishes fork and
p satisfying energy and momentum conservations, its
derivatives do not. This makes the integral non-zero.
Since we now have two more factors ofω the correc-
tion to the conductivity scales as

δσii ∝ T 4 . (41)

In more detail, letk0 be one of the roots of the equation
εk = εk−q. The corresponding root forp is thenp0 =
k0 − q. Expanding∆v around the roots gives

∆vi = ([δk−δp] · ∇)
(
vi

k0
− vi

k0−q

)
, (42)
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whereδk ≡ k−k0 andδp ≡ p−k0 +q. Subsequent
integration proceeds as in the integral∫ ∫

dxdyδ′ (x) δ′ (y)
1
2

(x− y)2 =

−
∫

dxδ′ (x) x = 1 , (43)

whereδk andδp play the roles ofx andy (and simi-
larly for an integral with a productδ′′(. . . )δ(. . . )). Fur-
ther cancelations for a particular FS may make theT
dependence even weaker but the generic answer isT 4.

Clearly, going away from the FS produces an extra
factor of T 2. Sinceω ∼ T in the NFL as well, the
result for the NFL regime is obtained by multiplying
the “naive” estimateδσii ∝ T 4/3 by T 2, which gives
δσii ∝ T 10/3. This is obviously subleading to theT 2

term resulting from the FL interaction in non-critical
channels.

Energy-dependent electron-impurity relaxation
time. In addition to the mechanism described above,
there are other sources of higher thanT 2 corrections to
the conductivity; one of them is the energy dependence
of τi which we have neglected so far. This mechanism
operates even in a Galilean-invariant system: although
eecollisions conserve the momentum, they redistribute
electrons in the energy space and thus affect the con-
ductivity, if τi depends on the energy [5, 7]. To esti-
mate the magnitude of this effect, we apply Eq. (28)
to the Galilean-invariant case (v = k/m) and ex-
pand the impurity relaxation times entering the “vec-
tor mean free path” asτi (εl) = τi(0) + τ ′i εl, where
τ ′i ≡ ∂τi(εl)/∂εl|εl=0. This yields

∆` =
τ ′i ω

m
(k− p− 2q) . (44)

Since (27) contains two factors of∆`, and each of them
is proportional toω, we have an extraω2 factor in the
integrand. In 3D, this immediately gives aT 4 term

δσii
3D ∝ (τ ′i )

2T 4 . (45)

In 2D, the situation is more delicate because the part
of the integrand associated with thek − p term in
(44) is logarithmically divergent. This a well-known
“2D log singularity” that occurs, on a more general
level, as the mass-shell singularity of the self-energy
(see Ref. [44, 45] and references therein). This is also
the same singularity that one encounters when calcu-
lating the thermal conductivity in 2D (in the absence of
impurity scattering) [46]. Indeed, our problem bears a

Fig. 4. (a) A 3D FS has an infinite number of self-intersection
points (a line). (b) A multiply connected FS has more than two

self-intersection points.

formal similarity to that of the thermal conductivity be-
cause the change in the thermal currentjTk = vkεk due
to eecollisions

jTk + jTp − jTk−q − jTp+q =

× (k− p− 2q) ω + q(εk − εp)
m

(46)

contains the same term as∆` in (44). The singularity
can be resolved by the same method as in Ref. [46],
i. e., by considering a dynamically screened Coulomb
interaction. The result is that, similar to the thermal
conductivity, the conductivity contains an extra log fac-
tor as compared to the 3D case:

σii
2D ∝ (τ ′i )

2T 4 ln (εF /T ) . (47)

The “2D log” does not occur in theT 2 term in the con-
ductivity, if the latter is finite due to broken integrabil-
ity, which is the subject of the next section.

An extension to the NFL case is again, trivial, and
we will not repeat the argument here.

3.4. Non-integrable cases

Concave FS in 2D. It follows from the previous dis-
cussion that whether theT 2 term is absent or present
depends entirely on the FS having two or more than
two self-intersection points. A concave FS in 2D can
have more than two self-intersection points (cf. Fig.
3b), therefore there are more than two solutions for the
initial momenta for givenq. Some of these solutions
still correspond to “integrable” processes, encountered
already for a convex FS, but the remaining ones do re-
lax the current. Therefore, aT 2 term survives in this
case.

3D FS. In 3D, the manifold of intersection between
the original and shifted FSs is a line, see Fig. 4(a).
Therefore, the equationεk = εk−q has infinitely many
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roots. There is no correlation between the roots of the
equationsεk = εk−q andεp = εp+q. Geometrically,
this means that the initial momenta,k andp, do not
have to be in the same plane as the final ones,k′ and
p′. Therefore, an anisotropic (but not quadratic) FS in
3D allows for aT 2 correction to the resistivity.

The T 5/3 term in the NFL regime survives for the
same reason as well. Therefore, our theory at least does
not contradict the experiments [28–30] where such
term was observed.

Multiply connected FS. If the FS is multiply con-
nected, aT 2 term in the resistivity is present, even if
the individual FS sheets do not allow for aT 2 term
on their own. Even more so, the individual sheets can
even be isotropic. The reason is obvious from Fig. 4(b)
which shows an example of two circular FSs in 2D.
Clearly, the equationεk = εk−q has more than two
roots even in this case. Thus, according to our previous
arguments, there is no general reason for the vanishing
of the T 2 term in such a situation. In Sec. 4 and Ap-
pendix 6, we discuss the two-band case in 2D in more
detail.

3.5. Weakly-integrable cases

In this section, we consider two situations when in-
tegrability is broken only weakly.

3.5.1. Quasi-2D metal
The first case is a layered metal with a quasi-2D

spectrum which, for simplicity, we assume to be sep-
arable into the in- and out-of-plane parts as

εk = ε
||
k||

+ εz
kz

, (48)

wherek|| andkz are the in-plane and out-of-plane com-
ponents of the momentum, correspondingly. In the
tight-binding model with nearest-neighbor hopping,
εz
kz

= t⊥ [1− cos (kzc)], wherec is the lattice spacing
in the z-direction. The metal is in a quasi-2D regime
when t⊥ � εF . In regard to the in-plane part of the
spectrum,ε||k||

, we assume that the corresponding en-
ergy contours are anisotropic but convex so that, in the
absence of inter-plane hopping, theT 2-term in the in-
plane conductivity would be absent. (If the planes are
assumed to be Galilean-invariant, i. e.,ε

||
k||

= k2
||/2m||,

as in a “corrugated cylinder model”, theT 2-term is triv-
ially zero because the in- and out-of-plane components
of the momentum are conserved independently, and
hencev||k||

+v||p||−v||k′
||
−v||p′

||
= 0.) To find theT 2-term

in the in-plane conductivity, we use a method similar to
that in Sec. 3.3.3, i. e., we expand theδ-functions, ex-
cept for that now we expand both inω andεz

kz
. As we

explained in Sec. 3.2, the expansion inω is really an
expansion inω normalized by the appropriate ultravio-
let energy scale of the problem. Likewise, the expan-
sion in εz

kz
is really an expansion int⊥/εF , which is

a natural small parameter for a quasi-2D system. The
zeroth-order term (ω = 0, εz

kz
= 0) nullifies∆v||. The

first-order terms also vanish: the ones, proportional to
ω, do so by parity, and the ones, proportional toεz

kz
, do

so because the first-order derivatives of theδ-functions
nullify (∆v||)2 after a single integration by parts. Fi-
nally, the cross products in second-order terms, being
odd in ω, also vanish. Therefore, the only surviving
second-order term is

δ
(
ε
||
k||−q||

− ε
||
k||

+ εz
kz−qz

− εz
kz
− ω

)
× δ

(
ε
||
p||+q||

− ε||p||
+ εz

pz+qz
− εz

pz
+ ω

)
=

1
2

[(
εz
kz−qz

− εz
kz

)2
+ ω2

]

× δ′′
(
ε
||
k||−q||

− ε
||
k||

)
δ
(
ε
||
p||+q||

− ε||p||

)
+

1
2

[(
εz
pz+qz

− εz
pz

)2
+ ω2

]

× δ
(
ε
||
k||−q||

− ε
||
k||

)
δ′′
(
ε
||
p||+q||

− ε||p||

)
+
[(

εz
kz−qz

− εz
kz

) (
εz
pz+qz

− εz
pz

)
− ω2

]
× δ′

(
ε
||
k||−q||

− ε
||
k||

)
δ′
(
ε
||
p||+q||

− ε||p||

)
. (49)

Equation (49) contains two independent corrections.
All terms proportional toω2 produce aT 4 correction to
the conductivity that exists even in a purely 2D system.
All terms containing the squares of the out-of-plane
dispersions produce aT 2 correction [10, 11]. There-
fore,

δσii = A4T
4 + A2t

2
⊥T 2 , (50)

wherei = x, y, and constantsA4 andA2 depend on
details of the in-plane spectrum; generically,A4 ∼ A2.
Equation (50) describes a dimensional crossover from
the 2D-like regime (δσii ∝ T 4) at T � t⊥ to the 3D-
like regime (δσii ∝ T 2) for T � t⊥). Notice that, in
the 3D regime, theT 2-term in thein-planeconductivity
depends on theout-of-planehopping.
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In the NFL regime, Eq. (50) is replaced by

δσii = A4T
10/3 + A2t

2
⊥T 4/3 . (51)

3.5.2. Conductivity near the convex-concave transition
In this subsection, we consider a FS near a convex-

concave transition which occurs when the Fermi en-
ergy goes above a certain threshold valueεc [17]. Such
a situation is encountered, e. g., in the case of surface
states of the Bi2Te3 family of 3D topological insula-
tors, where the electron spectrum can be approximated

by [48] ε±k = ±
√

v2
F k2 + λ2k6cos2(3θ), with θ be-

ing the polar angle. Corresponding isoenergetic con-
tours are shown in Fig. 6(a). We will be interested
in the vicinity of the convex/concave transition, when
|εF − εc| ≡ |∆| � εc.

We first consider the case of∆ � T , when the
isoenergetic contours near the Fermi energy are con-
cave and thermal population of concave isoenergetic
contours can be neglected. Obviously,∆v in Eq. (36)
shows a critical behavior: it is zero on the convex
side and non-zero on the concave side of the transi-
tion. However, there are two other quantities which
also show a critical behavior. As Figs. 5(a) and 5(b)
illustrate, even a concave FS does not necessarily have
more than two self-intersection points: this happens
only if the FS is shifted along certain directions that
lie close to high symmetry axes, i. e.,q lies within
some angular interval∆θq, and the magnitude of the
shift is below certain threshold, i. e.,q < qmax. Ob-
viously, ∆θq andqmax also depend on∆ in a critical
manner [49]. Approximating

∫
d2q by ∆θqq2

max, we
resolve theδ functions and integrate over all energies
to obtain

δσii = −e2τ2
i T 2

12

∑
l,m

∆θq|Mkl,pm(qmax)|2

× [∆vi]2lm
kl

vkl
· k̂l

pm

vpm · p̂m

1
|v′

kl
· q̂|

1
|v′

pm
· q̂|

, (52)

where the sum runs over all intersection points, the
prime denotes a derivative with respect to the polar an-
gle, and̂l ≡ l/|l|. The task at hand now is to find the
energy dependences of∆vi and∆θq.

This task is facilitated by the geometrical construc-
tion in Fig. 6(b). Letθ∗ be the angle between the nor-
mal to the FS at a point, parameterized by the angleθ,
andq. As one goes around the FS contour,θ∗ changes
with θ. Figure 6(c) shows the dependence ofθ∗ onθ for
the FS in Fig. 6(b) in the convex (εF < εc, dotted), crit-
ical (εF = εc, dashed), and concave (εF > εc, solid)

Fig. 5. (color online). (a) Even in the concave case, there can be
only two intersection points ifq is not along a special direction.
(b) Forq larger than a critical value, there are only two intersection

points.

regimes. The dependence is monotonic for the convex
FS and non-monotonic for the concave one. (This be-
havior is not specific to the particular FS considered
here but is a general feature of any convex or concave
contours). The oscillations are related to the rotational
symmetry of the FS (six-fold in our case; Fig. 6(c)
shows only the domainθ ∈ [0, π]). The non-monotonic
parts are centered around special (“invariant”) points
passed by theθ∗(θ) curves for all types of contours.
Near the invariant points, the non-monotonic part of the
curve obeys a cubic equation

θ∗ = bθ3 − a(∆)θ , (53)

wherea(∆) ∝ ∆ andb > 0 is a constant. The energy
dependences of the critical quantities can be obtained
from this equation.

To find∆θq, we note that the equationεk− εk−q =
0 reduces tovk · q = 0 for smallq. This implies that
the solutions are those points on the FS where the nor-
mal to the FS is perpendicular toq [cf. Fig. 6(b)],
i. e., θ∗(θ) = θq + π/2, whereθq is the angle defin-
ing the direction ofq. From symmetry, ifθ is a so-
lution, so isθ + π; therefore, one needs to consider
only half the domain ofθ. That only certain direc-
tions ofq allow for more than one solution to this equa-
tion, may be appreciated by inspecting Fig. 6(c), which
makes it obvious that multiple roots can only occur
in the regions of non-monotonicity. The interval∆θq

where it happens is then proportional to the (vertical)
width of these regions. Using Eq. (53), we find that
∆θq ∝ ∆θ∗ ∝ ∆3/2. Similarly, one can show [17]
that∆vi ∝ qmax∆ andqmax ∝ ∆1/2 (a posteriori, this
justifies the assumption of smallq).

Substituting these results into the expression for the
conductivity, we find that∆θq[∆vj ]2 ∝ ∆9/2, which
means the prefactor of theT 2 term in the resistivity
scales as∆9/2. The T 4 term is always present, as
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Fig. 6. (color online). (a) Isoenergetic contours for the surface states of the Bi2Te3 family of 3D topological insulators. The dashed line
corresponds to the critical energy for the convex-concave transition. (b) For smallq, points (black dots), where the normal to the FS is
perpendicular toq, are the points of self-intersection. (c)θ∗ vs θ [as defined in panel (b)]. Solid:εF > εc; dashed:εF = εc; dotted:

εF < εc;. (d) A zoom of the non-monotonic part of the graph in panel (c). Reproduced from Ref. [17], courtesy of the APS.

discussed before. Hence, the resistivity has the follow-
ing form:

ρ = ρ0 + A

(
∆
εF

)9/2

Θ(∆)T 2 + B
T 4

ε2
F

, (54)

where ρ0 is the residual resistivity,θ(x) is the step
function, andA andB are material-dependent parame-
ters (generically,A ∼ B). A crossover between theT 4

andT 2 regimes occurs atT ∼ εF (∆/εF )9/4 � εF .
Returning to the case of∆ . T , when both convex

and concave contours are populated, it is easy to see
that the∆9/2 prefactor is replaced byT 9/2, leading to
a T 13/2 term in ρ. This term, however, is subleading
to theT 4 one. Therefore, Eq. (54) describes the lead-
ing T -dependence of the resistivity in both situations
(|∆| � T and|∆| . T ) near the transition. Note that
the exponents of2, 4, and9/2 in Eq. (54) are univer-
sal, i. e., they are the same for anarbitrary 2D Fermi
surface with a non-quadratic energy spectrum near a
convex-concave transition.

4. High-temperature limit

So far, our analysis has been focused on the low-
temperature limit, when theeecontribution to the re-
sistivity is a correction to theei one. From the experi-
mental point of view, however, it is important to under-
stand whether theeecontribution may become larger

than theei one. It is the case for Umklapp scatter-
ing, whose contribution grows unabated up to the tem-
peratures comparable to the Fermi energy. The nor-
mal contribution, however, is different: it saturates in
the limit when theeerelaxation time becomes shorter
then theei one. The effect of saturation was under-
stood already in the earlier days of the electron trans-
port theory [50, 51]: very frequenteecollision establish
a quasi-equilibrium state with the drift velocity fixed by
ei scattering. The previous analysis was, however, lim-
ited to the case when normaleecollisions affect the re-
sistivity via the energy dependence of theei relaxation
time [7, 52]. In the next subsection, we show that the
saturation occurs even if theei relaxation time does not
depend on energy.

4.1. Saturation of the resistivity in a single-band metal

We adopt the simplest model of point-like impurities
with energy-independent scattering time, when the BE
is given by Eq. (19). Theeecollision integral in (19)
can be viewed as a linear operatorÎee acting on the
non-equilibrium part of the distribution functionf (1)

k ≡
fk − nk

Iee[f (1)](k) ≡
∑
k′

Iee(k,k′)f (1)
k′ , (55)
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The non-Hermitian matrix operator̂Iee can be repre-
sented in terms of its left,̃Φλ, and right,Φλ, eigenstates
as

Îee =
1

τ∗ee

∑
λ

|Φλ〉λ〈Φ̃λ| , (56)

whereτ∗ee is the effectiveeescattering time. The right
and left states constitute an orthonormal basis:

〈Φ̃λ′ |Φλ〉 ≡ 1
V
∑
k

Φ̃λ′
(k) Φλ(k) = δλ, λ′ , (57)

whereV is the system volume in the D-dimensional
space. A general solution of Eq. (19) can be expanded
over the complete basis as

f
(1)
k =

∑
λ

cλΦλ(k) ; (58)

substituting this form into Eq. (19), we obtain an equa-
tion for the coefficientscλ:[

1
τi

+
λ

τ∗ee

]
cλ = e

〈
Φ̃λ | vk ·En′k

〉
. (59)

Only the zero mode (λ = 0) contribution survives in
the limit of 1/τ∗ee → ∞, so the solution in the high-T
regime is given by

f
(1)
k

∣∣∣
T→∞

= eτiΦλ=0(k)
1
V
∑
k′

Φ̃λ=0(k′)vk′ ·En′k .

(60)

It is not difficult to see that the right and leftzeromodes
of Îee are

|Φλ=0
i (k)〉 = −Cikin

′
k , 〈Φ̃λ=0

i (k)| = C̃iki . (61)

Indeed,

〈Φ̃λ=0|Îee ∝
∑
k

k Iee(k,k′) = 0 (62)

due to momentum conservation; while

Îee|Φλ=0〉 ∝
∑
k′

Iee(k,k′)k′n′k′ = 0 (63)

because the collision integral, evaluated for equilibrium
distribution functions, remains to be equal to zero if all
energies are shifted asεk → εk +u ·k with u being an
arbitraryk-independent vector. The zero modes form
aD-dimensional subspace labeled by the Cartesian in-
dicesi = 1, 2, . . . D [ summation over these indices is

implied in (58) and (60)]. The scalar product (57) of
the zero-modes (61) is

〈Φ̃λ=0
i |Φλ=0

j 〉= C̃iCj

V
∑
k

kikj(−n′k) ≡

C̃iCjν(EF )〈kikj〉 , (64)

where

〈F 〉 ≡ 1
ν(εF )V

∑
k

F (k)(−n′k) . (65)

The scalar product (64) is diagonal in the coordi-
nate system associated with the principal axes of the
quadratic form〈kikj〉; normalization is ensured by
choosingC̃iCi = [ν(EF )〈k2

i 〉]−1. Using these prop-
erties, we reduce Eq. (60) to

f
(1)
k = eτi

∑
i

C̃iCiki(−n′k)
1
V
∑
k′

k′ivk′ ·En′k′ =

−eτi

∑
i,j

ki(−n′k)
〈kivj〉
〈k2

i 〉
Ej . (66)

Finally, we obtain the conductivity tensor in the high-T
limit as

σij |T→∞ = 2e2ν(EF )τi

∑
l

〈vikl〉
〈klvj〉
〈k2

l 〉
. (67)

In the opposite limit of low temperatures, the standard
expression reads

σij |T→0 = 2e2ν(EF )τi〈vivj〉 . (68)

In contrast to the case of energy-dependentτi, when
the low- and high-temperature limits of the conductiv-
ity differ in how τi is averaged over the energy [7, 52],
these limits in our case differ in how the conductivity
is averaged over the FS. Naturally, the two limits co-
incide for the Galilean-invariant case. Notice that sat-
uration holds for any dimensionality and shape of the
FS, i. e., regardless of whether the temperature depen-
dences of the resistivity starts with aT 2 or T 4 term at
low temperatures, it will saturate at high temperatures.
In reality, of course, other scattering mechanisms, such
as electron-phonon scattering, will mask the resistivity
saturation.

If the FS is not abnormally anisotropic, the low- and
high-T limits are of the same order, which means that a
trueT 2-scaling regime does not have room to develop.
A mechanism in which such a regime is possible is con-
sidered in the next section.



158 H.K. Pal et al. / Lith. J. Phys.52, 142–164 (2012)

4.2. Two-band model: Scaling regime

In this section, we consider a simple model of a two-
band metal with impurities. Since normaleecollisions
affect the resistivity for any multiply-connected FS, we
consider the simplest case of two bands with quadratic
dispersions,ε(1,2)

k = k2/2m1,2, and, in general, dif-
ferent impurity scattering times,τi1 andτi2. We con-
sider only the inter-band interaction (the intra-band one
drops out in this case anyway) and neglect processes in
which electrons are transferred from one band to an-
other. The BE for this model in 2D can be solved ex-
actly by generalizing the method of Appel and Over-
hauser [8] (see Appendix) with the result

ρ(T ) =
π

e2εF

1
τi1τi2

+ 1
τee(T )

(
1

τi1
m1
m2

+ 1
τi2

m2
m1

)
1

τi1
+ 1

τi2
+ 1

τee(T )

(
2 + m1

m2
+ m2

m1

) ,

(69)
where

1
τee(T )

=

√
m1m2

2Tε2
F

∫ ∞

−∞
dω

∫ 2kmin
F

0

dqq

2π

× W (q, ω)√
1− (q/kF1)2

√
1− (q/2kF2)2

× ω2N (ω) [N (ω) + 1] (70)

andkmin
F ≡ min{kF1, kF2}. The result for the resistiv-

ity follows already from the equations of motion [7]

m1
dv1

dt
=−eE− m1v1

τi1
− ηn2(v1 − v2) = 0 ,

m2
dv1

dt
=−eE− m2v2

τi2
− ηn1(v1 − v2) = 0 , (71)

if the phenomenological “friction coefficient”η is ex-
pressed via the microscopic scattering time asη =
π/εF τee(T ).

An interesting case is when the masses are signifi-
cantly different (as would be the case for a metal with
partially occupieds andd bands [53]), e. g.,m2 � m1

(consequently,τi2 � τi1). At T → 0, the two bands
conduct in parallel, and the total resistivity is domi-
nated by that of the lighter band

ρ(0) =
π

e2εF

1
τi1 + τi2

≈ π

e2εF τi1
. (72)

At T → ∞, the resistivity saturates at a value deter-
mined by the resistivity of the heavy band

ρ (∞) =
π

e2εF

(
1
τi1

(
m1

m2

)2

+
1
τi2

)
≈ π

e2εF τi2
.

(73)
Therefore, theT = 0 andT = ∞ limits now differ
significantly

ρ (∞)
ρ (0)

=
τi1

τi2
=

m2

m1
� 1 . (74)

The scaling regime, in which

ρ (T ) ≈ π

e2

m2

m1

1
εF τee(T )

(75)

occurs in a wide temperature intervalTl � T � Th,
the boundaries of which are defined by

1
τee (Tl)

=
1
τi1

m1

m2
;

1
τee (Th)

=
1
τi2

m1

m2
. (76)

This model can also be applied to the QPT, in which
case it is natural to assume that critical fluctuations oc-
cur only in the heavy band. Consequently, the effec-
tive interaction is obtained from Eq. (6) by replacing
vF → vF2 andνF → m2/2π. Computing the integral
(70) for δ = 0 and q � kmin

F , we find the effective
scattering rate in the NFL regime

1
τee(T )

=
32π4ζ(4/3)
81Γ(2/3)

√
m1m2

ε2
F

1
m2

2a
2

(
vF2

a

)2/3

T 4/3 ,

(77)
whereζ(x) andΓ(x) are the Riemann andΓ-functions,
correspondingly. In this scenario, normaleecollisions
do lead to a real scaling regime in the resistivity with an
exponent given by “naive” power-counting argument.

5. Limitations of the Boltzmann-equation approach

The semiclassical BE does not capture two types of
effects. The first type – quantum – results from quan-
tum interference betweeneeandei scattering; the sec-
ond one – classical – from correlations in the electron
flow patterns produced by different impurities. In this
section, we discuss the limits of validity of the semi-
classical approach focusing on the 2D case.

5.1. Quantum-interference effects

5.1.1. Fermi-liquid regime
Recall that the FL-like contribution to the resistivity,

discussed in this paper, behaves asT 2 (or T 4, if there
is approximate integrability) in the low-temperature
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regime, defined by1/τee � 1/τi and saturates in the
high-temperature regime, defined by1/τee � 1/τi. In
non-integrable systems,1/τee = gT 2/εF , whereg is
the dimensionless coupling constant. In a generic FL,
g ∼ 1 and the crossover between the two limits oc-
curs atT ? =

√
εF /τi. For a good metal,εF τi � 1

so that1/τi � T ? � εF . In case of quantum cor-
rections (QC), the scale that differentiates between low
and high temperatures, i. e., between the diffusive and
ballistic regimes, isTDB = 1/τi. For T � TDB, one
is in the diffusive limit, characterized by a logarithmi-
cally divergent Altshuler-Aronov correction [54]; with
all coupling constants being of order one,|δσ|/σD ∼
ln(1/Tτi)/εF τi, whereσD = e2εF τi/π is the Drude
conductivity. ForT � TDB, one is in the ballis-
tic limit, where the correction scales linearly withT :
|δσ|/σD ∼ T/εF (Ref. [55]). Apart from the inter-
action correction, there is a also a weak-localization
correction−δσWL/σD ∼ ln(τφ/τi)/εF τi, whereτφ

is the phase-breaking time, a precise form of which
depends on whether one is in the diffusive or ballis-
tic limits: in the former,1/τφ ∼ T ln(εF τi)/εF τi; in
the latter,1/τφ ∼ 1/τee. In the diffusive limit, the
weak-localization correction is similar to the Altshuler-
Aronov result, differing only in the prefactor. In
the ballistic limit, the weak localization correction is
smaller than the interaction correction by a factor of
ln(T ∗/T )/Tτi. Therefore, the correct order of mag-
nitude for the quantum-interference correction is still
given by the interaction correction both in the diffusive
and ballistic limits. Comparing the FL-contribution
−δσFL/σD ∼ T 2τi/εF to the quantum corrections, we
find that |δσQC/δσFL| ∼ ln(1/Tτi)/T 2τ2

i � 1 and
|δσFL/δσQC| ∼ Tτi � 1 in the diffusive and ballis-
tic limits, correspondingly. Therefore, it is meaningful
to consider the FL contribution and neglect quantum-
interfence processes in the ballistic but not in the dif-
fusive limit. The interplay of different mechanisms is
shown schematically in Fig. 7.

In the integrable case, theT 2 term in the resistivity
vanishes and the FL correction scales as|δσFL|/σD ∼
T 4τi/ε3

F . In this case, the FL correction dominates over
the quantum one only at temperatures well above the
diffusion-ballistic crossover:T � (εF τi)2/3TDB �
TDB. It is worth noting that the discussion of the ex-
perimental observations of quantum corrections in the
ballistic regime has been so far limited to 2D electron
gases in Si and GaAs heterostructures [58], with essen-
tially circular FSs and almost parabolic spectra, where
the FL contribution is expected to be very small. The
FL contribution, however, is expected to play a domi-

nant role in 2D systems with highly anisotropic FSs and
non-parabolic spectra, such as the surface state in the
topological insulators of the Bi2Te3 family, discussed
in Sec. 3.5.2.

5.1.2. Non-Fermi–liquid regime
In this section, we describe the interplay between the

quantum-interference and directeecontributions to the
resistivity in the NFL–regime of a ferromagnetic quan-
tum phase. For simplicity, we assume that the integra-
bility is broken already in a single-band case by suf-
ficiently strong concavity of the FS. In this case, one
can simply calculate the transport time for scattering at
critical spin fluctuations, described by the propagator
(6) with δ = 0, and substitute the result into the Drude
formula [26]. This gives−δσNFL/σD = T 4/3τi/T

1/3
0 ,

whereT0 ∼ (vF /a)(kF a)9 (we remind thatkF a �
1 is a control parameter of the HMM model). The
temperature above which the NFL contribution satu-
rates is now given byT ∗ ∼ ε

1/4
F (kF a)2/τ

3/4
i . The

main difference between the FL– and NFL–regimes is
that quantum criticality changes space-time (or energy-
momentum) scaling: whileω ∝ q in a FL, ω ∝ qZ

near QCP, whereZ is the dynamical exponent (Z = 3
in the HMM model). Therefore, the temperature of the
diffusive-ballistic crossover, determined by the condi-
tion q̄vF τi ∼ 1, whereq̄ ∼ (T/vF a2)1/3 is a typical
value of the momentum transfer in aneecollision, is
replaced byTDB ∼ (a/vF τi)2/τi (Ref. [56, 57]). In a
clean system, wherea/vF τi � 1, TDB is significantly
smaller than in a FL, whereTDB ∼ 1/τi, so that the
ballistic regime continues down to much lower temper-
atures compared to the FL case, and we limit our anal-
ysis to this regime. (Lowering ofTDB in the vicinity
of a ferromagnetic QCP becomes noticeable already in
the FL regime [55].) Another consequence of quantum-
critical scaling is that the quantum correction in the bal-
listic regime near a QCP behaves asT 1/3 as opposed to
T : −δσQC/σD ∼ (T/εF )1/3 (akF )4/3 (Ref. [56, 57]).
Comparing the NFL and QC contributions, we find that
the NFL contribution dominates only atT � T̃ , where
T̃ ∼ (akF )4/τi ∼ TDB(εF τi)2(kF a)2 � TDB. A
relative weakness of of the NFL contribution is due to
small-angle scattering at long-wavelength critical fluc-
tuations.

5.2. Viscous contribution to the resistivity

The statement thatee interaction does not con-
tribute to the resistivity of a Galilean-invariant FL (cf.
Sec. 2.4) seems to contradict an intuitive notion that it



160 H.K. Pal et al. / Lith. J. Phys.52, 142–164 (2012)

Fig. 7. Different temperatue regimes for Fermi-liquid (FL) and quantum-interference (QC) corrections to the conductivity. The shaded
region on the temperature scale is the regime where the FL (T 2) correction is dominant.

is the viscosity of a liquid that defines its rate of flow.
In a certain regime, indeed, the resistivity does depend
on the viscosity of the electron liquid [59, 60]. This ef-
fect is not taken into account by the standard BE which
neglects not only quantum but also classical correla-
tions between scattering events. The “viscous” contri-
bution occurs at high enough temperatures, when the
mean free path due to theeeinteraction,lee = vF τee, is
smaller than at least the average distance between im-
purities,1/N

1/D
i , whereNi is the number density of

impurities [60]. In this regime, theei mean free path
li � 1/N

1/D
i � lee is the largest scale of the prob-

lem, which implies that the FL contribution – even if
allowed due to anisotropy of the FS – has already sat-
urated of at a value comparable to the Drude resistvity
(cf. Sec. 4). Barring phonons, the viscous contribution
is the only source of theT dependence in this regime.

To estimate the magnitude of the viscous contribu-
tion, we consider, following Ref. [60], a flow of the
electron liquid through a random array of spherical im-
purities. First, the impurity radiusR is assumed to
be much larger thanlee, so that a hydrodynamic de-
scription is applicable at all lengthscales. The force on
one electron from all impurities is just the Stokes force
FS ∼ (Ni/N)µuR, whereµ is the dynamic viscosity,
u is the flow velocity, andN is the electron number
density. [An exact value of the numerical coefficient
in FS depends on the boundary conditions for the ve-
locity at the surface of the sphere [61] but will not be
needed here.] In steady state,FS = eE, which yields
u ∼ eEN/NiµR, and thus the viscous contribution to
the resistivity is given byδρv ∼ NiµR/e2N2. In a FL,
δρv ∝ µ ∼ mNvF lee ∝ 1/T 2; thus the viscous cor-
rection is of theinsulatingsign. On the other hand, the
Drude resistivity resulting from scattering off the same
impurities is ρD = m/e2Nτi ∼ mvF NiR

2/e2N .
The viscous contribution is smaller than the Drude re-

sistivity within the hydrodynamic regime:δρv/ρD ∼
lee/R � 1.

In 2D, the Stokes force from a disk-like impurity
depends onR only logarithmically: FS = 4πµu/L,
whereL = ln(3.70µ/RmNu) [61]. However,1/τi ∼
vF NiR also containsR instead ofR2, so that the ratio
δρv/ρD is the same (up to a logarithm) as in 3D.

The situation is somewhat different for small impu-
rities, because a force exerted by a small (R � lee)
sphere on a rarified gas depends not on the viscosity
but on the gas-solid accommodation coefficients [62].
In 2D, the situation is further complicated by the Stokes
paradox [61]. Hruska and Spivak [60] showed that the
viscous correction for small impurities in 2D is given
by

−δρv

ρD
∼ a

lee
ln

(
1

N
1/2
i lee

)
, (78)

where a is the impurity scattering length anda �
lee � 1/N

1/2
i . Because of a large logarithmic factor,

δρv can, in principle, be comparable toρD.

6. Conclusions

The main purpose of this paper was to analyze the
effect of ee interactions on the resistivity in the situa-
tion when Umklapp scattering of electrons can be ne-
glected. Such a situation arises, e. g., in low-carrier
density materials, as well as in metals near aq = 0
QPT, where the effective interaction is of a long range.
In such cases, the conventionalT 2 dependence (or its
T

D+2
3 analog in the NFL region near a QPT) of the re-

sistivity on temperature is not guaranteed. Whether it is
present depends on 1) dimensionality, 2) shape, and 3)
topology of the FS. If the FS is quadratic or isotropic,
there is noT 2 contribution to the resistivity. However,
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anisotropy is not sufficient to guarantee theT 2 depen-
dence. In the case of a convex and simply connected
FS in 2D, there is noT 2 dependence either. In such
cases, the leading temperature dependence on resistiv-
ity due to ee interactions isT 4 in the FL region and
T (D+8)/3 in the NFL region. Also, if the FS changes its
shape from convex to concave as a function of the fill-
ing fraction, the resistivity follows a universal scaling
form near the convex-concave transition. In all other
cases, theT 2 (or T

D+2
3 ) behavior is allowed, albeit

only as a correction to the Drude resistivity. However,
a true scaling regime (when theeecontribution is larger
then theei one) is possible for a quantum-critical two-
band metal with substantially different band masses.
Since a quantum-critical behavior is observed typically
in multi-band metals with partially occupiedd bands,
we conjecture that the5/3 scaling of the resistivity ob-
served in 3D ferromagnets [28–30] and subquadratic
scaling in a quasi-2D metamagnet Sr3Ru2O7 [63–65]
is due to the interaction between light and heavy carri-
ers in these materials.
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Appendix. Two-band model in 2D

In this Appendix we derive Eq. (69). The two cou-
pled BEs (1 and 2 refers to the bands 1 and 2) read

− ev1 ·∇k1f1 =−I12
ee [f1, f2]−

f1 (k1)− n1

τi1
,

−ev2 ·∇k1f2 =−I21
ee [f1, f2]−

f2 (k2)− n2

τi2
, (A1)

whereIij
ee is the electron-electron collision integral for

scattering between two electrons from theith andjth
band, andn1,2 are the equilibrium distributions. Since
in our model each of the bands is Galilean-invariant on
its own, the intra-bandee interaction cannot affect the
resistivity, and the corresponding parts of the collision
integrals are not written down. Linearizingfα (α =
1, 2) in the same way as for the single-band case

fα = nα + nα (1− nα) gα = nα − Tn′αgα , (A2)

we obtain

− ev1·En′1 =−I12
ee [g1, g2] +

Tn′1g1

τi1
,

−ev2·En′2 =−I21
ee [g1, g2] +

Tn′2g2

τi2
, (A3)

where

I12
ee =

∫
d2k2

(2π)2

∫
d2k′1
(2π)2

∫
d2k′2
(2π)2

W
(
k− k′, εk1 − εk′

1

)
× n1 (k1) n2 (k2)

(
1− n1

(
k′1
)) (

1− n2
(
k′2
))

×
[
g1 (k1) + g2 (k2)− g1

(
k′1
)
− g2

(
k′2
)]

× δ
(
εk1 + εk2 − εk′

1
− εk′

2

)
δ
(
k1+k2−k′1 − k′2

)
(A4)

andI21
ee differs from I21

ee in that the first integral goes
over k1 instead ofk2. We seek for a solution in the
following form

gα = ecα (vα ·E) /T , (A5)

wherecα are the constants that are to be determined.
Multiplying the first and second BEs byv1·E andv2·E
and integrating overk1 andk2, correspondingly, we
obtain for the left-hand sides

− e

∫
d2kα

(2π)2
(vα ·E)2 n′α =

mα

4π
v2
FαeE2 . (A6)

Similarly, theei collision integrals, integrated over the
corresponding momenta, reduce to∫

d2kα

(2π)2
Tn′αgα

τiα
vα ·E = −cα

mα

4π

v2
Fα

τiα
eE2 . (A7)

For a FL, the scattering probability may be assumed to
depend only on the momentum transfer but not energy
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transfer. In this case, the integrals ofeecollision inte-
grals multiplied overvα ·E reduce to∫

d2k1

(2π)2
v1 ·EI12

ee = eE2R
m2

vF1vF2

(
c1

m1
− c2

m2

)
,

(A8)

where

R ≡ π

3
T 2
∫ 2kmin

F

0
dqq

W (q)√
1−

(
q

2kF1

)2
√

1−
(

q
2kF2

)2

(A9)

with kmin
F ≡ min{kF1, kF2}, and

∫
k2

v2 · EI21
ee differs

from (A8) by a factor ofm1/m2. [Integration over en-
ergies was performed with the help of Eq. (31).] Solv-
ing the system of linear equations

m1

4π
v2
F1 = − c1

τi1

m1

4π
v2
F1−R

m2

vF1vF2

[
c1

m1
− c2

m2

]
m2

4π
v2
F2 = − c2

τi2

m2

4π
v2
F2+R

m1

vF1vF2

[
c1

m1
− c2

m2

] ,

(A10)

we find

c1 = −1/τi2 + (1/τee) (m1/m2 + 1)
1

τi1τi2
+ 1

τee

(
1

τi1
m1
m2

+ 1
τi2

m2
m1

)

c2 = −1/τi1 + (1/τee) (m2/m1 + 1)
1

τi1τi2
+ 1

τee

(
1

τi1
m1
m2

+ 1
τi2

m2
m1

)
,

(A11)

where the effectiveeescattering time was introduced
as

1
τee

≡ 4πR
1

√
m1m2

1
v2
F1v

2
F2

. (A12)

Using that the Fermi energy is same for both bands,
i. e., thatvF1/vF2 =

√
m2/m1, we cast Eq. (A12) into

a different form

1
τee(T )

=
π2

3
T 2

√
m1m2

ε2
F

∫ 2kmin
F

0
dqq

× W (q, 0)√
1−(q/2kF1)2

√
1−(q/2kF2)2

. (A13)

Oncec1,2 are found, one readily finds the electric cur-
rent and arrives at the expression for the resistivity
quoted in Eq. (69). An explicit expression for1/τee

was derived in Ref. [66] for a special case of the “over-
screened” Coulomb potential. Our result for this case

coincides with that in Ref. [66] up to a numerical coef-
ficient.

In general, theeescattering probability depends not
only onq but also onω. In this case, the integrals over
energies cannot be performed in a general form, and the
expression for1/τee can only be reduced to the form
quoted in Eq. (70).

It should be stressed that the electron masses occur-
ring in all equations of this section should be under-
stood asbare rather than renormalized masses. This
follows from the derivation of the BE in the Keldysh
technique using the Migdal-Eliashberg approximation.
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