36 research outputs found

    Quantum chemical studies of redox properties and conformational changes of a four-center iron CO2 reduction electrocatalyst.

    Get PDF
    The CO2 reduction electrocatalyst [Fe4N(CO)12]- (abbrev. 1-) reduces CO2 to HCO2- in a two-electron, one-proton catalytic cycle. Here, we employ ab initio calculations to estimate the first two redox potentials of 1- and explore the pathway of a side reaction involving CO dissociation from 13-. Using the BP86 density functional approximation, the redox potentials were computed with a root mean squared error of 0.15 V with respect to experimental data. High temperature Born-Oppenheimer molecular dynamics was employed to discover a reaction pathway of CO dissociation from 13- with a reaction energy of +10.6 kcal mol-1 and an activation energy of 18.8 kcal mol-1; including harmonic free energy terms, this yields ΔGsep = 1.4 kcal mol-1 for fully separated species and ΔG‡ = +17.4 kcal mol-1, indicating CO dissociation is energetically accessible at ambient conditions. The analogous dissociation pathway from 12- has a reaction energy of 22.1 kcal mol-1 and an activation energy of 22.4 kcal mol-1 (ΔGsep = 12.8 kcal mol-1, ΔG‡ = +18.1 kcal mol-1). Our computed harmonic vibrational analysis of [Fe4N(CO)11]3- or 23- reveals a distinct CO-stretching peak red-shifted from the main CO-stretching band, pointing to a possible vibrational signature of dissociation. Multi-reference CASSCF calculations are used to check the assumptions of the density functional approximations that were used to obtain the majority of the results

    Optical and microstructural studies of atomically flat ultrathin In-rich InGaN/GaN multiple quantum wells

    Get PDF
    Optical and microstructural properties of atomically flat ultrathin In-rich (UTIR) InGaN/GaN multiple quantum well were investigated by means of photoluminescence (PL), time-resolved PL (TRPL), and cathodoluminescence (CL) experiments. The sample exhibits efficient trapping of the photoexcited carriers into quantum wells (QWs) and the effect of internal electric field in the QWs was found negligible by excitation power-dependent PL and TRPL. These phenomena were attributed to the nature of UTIR InGaN QWs, indicating the potential of this system for application in optoelectronic devices. Variation of TRPL lifetime across the PL band and spatially resolved monochromatic CL mapping images strongly suggest that there is micrometer-scale inhomogeneity in effective band gap in UTIR InGaN/GaN QWs, which is originated from two types of localized areas.open141

    Terahertz frequency and power measurement based on terahertz frequency comb and a bolometer

    No full text
    We report on terahertz frequency and power measurements based on terahertz frequency comb and a bolometer. Terahertz frequency comb and its individual modes are measured through multiheterodyne beat detection by use of a bolometer. A power spectrum of terahertz frequency comb is measured over the frequency up to 1.7 THz, and the frequency and power of the comb modes spectrally resolved are measured. Also, it is demonstrated that a single-frequency terahertz radiation can be totally characterized with this experimental scheme

    Terahertz spectrum analyzer based on frequency and power measurement

    No full text
    We demonstrate a terahertz (THz) spectrum analyzer based on frequency and power measurement. A power spectrum of a continuous THz wave is measured through optical heterodyne detection using an electromagnetic THz frequency comb and a bolometer and power measurement using a bolometer with a calibrated responsivity. The THz spectrum analyzer has a frequency precision of 1×10−11, a frequency resolution of 1Hz, a frequency band up to 1.7THz, and an optical noise equivalent power of ~1 pW/Hz1/2

    Driving torsion scans with wavefront propagation

    No full text
    The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes

    Continuous-wave THz generation from ingaas-based photomixers pumped by a tunable dual-wavelength DFB laser

    No full text
    Continuous-wave (CW) THz generation from InGaAs based photomixers has been demonstrated by using a tunable dual-wavelength 3-section DFB laser diode as the optical beat source. The wavelength of each lasing mode can be tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The CW THz frequency emitted from the InGaAs photomixers is continuously tuned from 0.16 to 0.49 THz

    Site-controlled InAs quantum dot for hetero-integration of single photon emitter

    No full text
    The site-controlled quantum dot was obtained for hetero-integration of single photon emitter with silicon photonic circuit and fiber optics. By using selective-area growth method, the InAs quantum dot was formed on the InP pyramid which showed single photon emission from 1100 to 1300 nm. The hetero-integrated structure was designed as InAs quantum dot on the silicon waveguides with high coupling efficiency and fabricated by micro-transfer technique
    corecore