127 research outputs found

    MULTI-VESSELS COLLISION AVOIDANCE STRATEGY FOR AUTONOMOUS SURFACE VEHICLES BASED ON GENETIC ALGORITHM IN CONGESTED PORT ENVIRONMENT

    Get PDF
    An improved genetic collision avoidance algorithm is proposed in this study to address the problem that Autonomous Surface Vehicles (ASV) need to comply with the collision avoidance rules at sea in congested sea areas. Firstly, a collision risk index model for ASV safe encounters is established taking into account the international rules for collision avoidance. The ASV collision risk index and the distance of safe encounters are taken as boundary values of the correlation membership function of the collision risk index model to calculate the optimal heading of ASV in real-time. Secondly, the genetic coding, fitness function, and basic parameters of the genetic algorithm are designed to construct the collision avoidance decision system. Finally, the simulation of collision avoidance between ASV and several obstacle vessels is performed, including the simulation of three collision avoidance states head-on situation, crossing situation, and overtaking situation. The results show that the proposed intelligent genetic algorithm considering the rules of collision avoidance at sea can effectively avoid multiple other vessels in different situations

    Drug-induced tooth discoloration: An analysis of the US food and drug administration adverse event reporting system

    Get PDF
    Background: Certain drugs can cause intrinsic or extrinsic tooth discoloration, which is not only a clinical issue but also an esthetic problem. However, limited investigations have focused on drug-induced tooth discoloration. The present work aimed to determine the drugs causing tooth discoloration and to estimate their risks of causing tooth discoloration.Methods: An observational, retrospective, and pharmacovigilance analysis was conducted, in which we extracted adverse event (AE) reports involving tooth discoloration by using the data of the US Food and Drug Administration’s Adverse Event Reporting System (FAERS) from the first quarter (Q1) of 2004 to the third quarter (Q3) of 2021. Disproportionality analyses were performed to examine risk signals for tooth discoloration and determine the drugs inducing tooth discoloration.Results: Based on predefined inclusion criteria, 1188 AE reports involving 302 suspected drugs were identified. After data mining, 25 drugs generated positive risk signals for tooth discoloration, of which 10 were anti-infectives for systemic use. The top reported drug was tetracycline (n = 106), followed by salmeterol and fluticasone (n = 68), amoxicillin (n = 60), chlorhexidine (n = 54), and nicotine (n = 52). Cetylpyridinium (PRR = 472.2, ROR = 502.5), tetracycline (PRR = 220.4, ROR = 277), stannous fluoride (PRR = 254.3, ROR = 262.8), hydrogen peroxide (PRR = 240.0, ROR = 247.6), and chlorhexidine (PRR = 107.0, ROR = 108.4) showed stronger associations with tooth discoloration than the remaining drugs. Of 625 AE reports involving 25 drugs with positive risk signals, tooth discoloration was mostly reported in patients aged 45–64 (n = 110) and ≤18 (n = 95), and 29.4% (192/652) of the reports recorded serious outcomes.Conclusion: This study revealed that certain drugs are significantly associated with tooth discoloration. Caution should be exercised when using these drugs, especially during pregnancy and early childhood

    Small Stretch Problem of the DCT Scheme and How to Fix It

    Get PDF
    DCT is a beyond-birthday-bound (BBB) deterministic authenticated encryption (DAE) mode proposed by Forler et al. in ACISP 2016, ensuring integrity by redundancy. The instantiation of DCT employs the BRW polynomial, which is more efficient than the usual polynomial in GCM by reducing half of the multiplication operations. However, we show that DCT suffers from a small stretch problem similar to GCM. When the stretch length τ is small, choosing a special m-block message, we can reduce the number of queries required by a successful forgery to O(2τ/m). We emphasize that this attack efficiently balances space and time complexity but does not contradict the security bounds of DCT. Finally, we propose an improved scheme named Robust DCT (RDCT) with a minor change to DCT, which improves the security when τ is small and makes it resist the above attack

    Small Stretch Problem of the DCT Scheme and How to Fix it

    Get PDF
    DCT is a beyond-birthday-bound~(BBB) deterministic authenticated encryption~(DAE) mode proposed by Forler et al. in ACISP 2016, ensuring integrity by redundancy. The instantiation scheme of DCT employs the BRW polynomial, which is more efficient than the usual polynomial function in GCM by reducing half of the multiplication operations. However, we show that DCT suffers from a small stretch problem similar to GCM. When the stretch length τ\tau is small, choosing a special mm-block message, we can reduce the number of queries required by a successful forgery to O(2τ/m)\mathcal{O}(2^{\tau}/m). We emphasize that this attack efficiently balances space and time complexity, but does not contradict the security bounds of DCT. Finally, we propose an improved scheme named Robust DCT~(RDCT) with a minor change to DCT, which improves the security when τ\tau is small and makes it resist the above attack

    OsSIDP301, a Member of the DUF1644 Family, Negatively Regulates Salt Stress and Grain Size in Rice

    Get PDF
    As a major environmental factor, salt stress substantially retards growth and reduces the productivity of rice (Oryza sativa). Members of the DUF1644 family, “the domains of unknown function 1644 motif” are predicted to play an essential regulatory role in response to abiotic stress. However, the specific molecular mechanisms of most members of this family remain elusive. Here, we report that the OsSIDP301 (stress-induced DUF1644 protein) was induced by salt stress and abscisic acid (ABA). We found that overexpression of OsSIDP301 (OE) in plants conferred salt hypersensitivity and reduced grain size, whereas plants with OsSIDP301 RNA interference (RNAi) exhibited salt tolerance and increased grain size in rice. OsSIDP301 determines salt stress tolerance by modulating genes involved in the salt-response and ABA signaling pathways. Further studies suggest that OsSIDP301 regulates grain size by influencing cell expansion in spikelet hulls. Moreover, OsSIDP301 interacts with OsBUL1 COMPLEX1 (OsBC1), which positively regulates grain size in rice. Our findings reveal that OsSIDP301 functions as a negative regulator of salt stress and grain size, and repressing its expression represents a promising strategy for improving salt stress tolerance and yield in rice

    Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis

    Get PDF
    Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of excitation-emission matrix spectra revealed five fluorescent components occurring in sewage DOM: one protein-like (Cl), three humic-like (C2, C4 and C5) and one xenobiotic-like (C3) components. During the aerated grit chamber and primary sedimentation tank stage, there was only a slight decrease in fluorescence intensity and the absorption coefficient at 350 nm (a(350)). During the second aeration stage, high concentration of protein-like and short-wavelength-excited humic-like components were significantly degraded accompanied by significant loss of DOC (80%) and a(350) (30%), indicating that Cl and C2 were the dominant constituents of sewage DOM. As a result, long-wavelength-excited C4 and C5 became the dominant humic-like components and the DOM molecular size inferred from the variation of spectral slope S (300-650 nm) and specific absorption (a(280)/DOC) increased. Combination use of F-max of C 1 and the ratio of C1/C5, or a(350) may provide a quantitative indication for the relative amount of raw or treated sewage in aquatic environment.National Natural Science Foundation of China [40776041, 40676046]; National High Technology Research and Development Program of China [2007AA091704]; Program for New Century Excellent Talents in Fujian Province Universit

    An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    Get PDF
    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding

    Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium Vibrio sp. QY101

    Get PDF
    Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101) not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a new recognition about the functions of bacterial exopolysaccharides
    corecore