
Small Stretch Problem of the DCT Scheme
and How to Fix it

Yuchao Chen1,2, Tingting Guo3, Lei Hu4,5, Lina Shang6, Shuping Mao4,5, and
Peng Wang7(B)

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
chenyuchao@mail.sdu.edu.cn

2 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan, China

3 Research Institute of Basic Theories, Zhejiang lab
guotingting4633@gmail.com

4 SKLOIS, Institute of Information Engineering, CAS
{hulei, maoshuping}@iie.ac.cn

5 School of Cyber Security, University of Chinese Academy of Sciences
6 Space Star Technology Co., Ltd.

sln-8108@163.com
7 School of Cryptology, University of Chinese Academy of Sciences

w.rocking@gmail.com

Abstract. DCT is a beyond-birthday-bound (BBB) deterministic au-
thenticated encryption (DAE) mode proposed by Forler et al. in ACISP
2016, ensuring integrity by redundancy. The instantiation scheme of DCT
employs the BRW polynomial, which is more efficient than the usual
polynomial function in GCM by reducing half of the multiplication oper-
ations. However, we show that DCT suffers from a small stretch problem
similar to GCM. When the stretch length τ is small, choosing a special
m-block message, we can reduce the number of queries required by a
successful forgery to O(2τ/m). We emphasize that this attack efficiently
balances space and time complexity, but does not contradict the security
bounds of DCT. Finally, we propose an improved scheme named Robust
DCT (RDCT) with a minor change to DCT, which improves the security
when τ is small and makes it resist the above attack.

Keywords: DCT · Deterministic Authenticated Encryption · AEAD · BRW
Polynomial Function · Forgery Attack · Stretch.

1 Introduction

Authenticated encryption (AE) schemes [25] provide confidentiality and integrity
simultaneously. AE achieves integrity by generating a tag or encoding some re-
dundancy into the message, leading to ciphertext expansion, a.k.a. tag length
or stretch. In the real world of cryptographic systems, such as RFID cards,
sensor networks, or embedded devices, 128-bit tags may not be supported; in-
stead, these embedded devices usually support tag sizes such as 32 bits or 64

2 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

bits. Generally, GCM [21] has a variety of tag lengths for choice by truncation,
such as 64, 96, 104, 112, 120, and 128 bits, which fits all kinds of requirements.
GCM is widely used in many applications, such as IPsec and TLS. NIST already
standardizes GCM as SP 800-38D [7], and the ISO includes GCM as a part of
ISO/IEC 19772:2020 [16].

However, GCM has a tag truncation problem due to the linear modification
technique proposed by Ferguson [9] in 2005. When using a small truncated tag,
adversaries can change the ciphertext by solving a system of linear equations (or
a linear system) to obtain potential successful modifications with higher prob-
ability. For example, when GCM uses a 32-bit tag and adversaries know the
ciphertext for a message consisting of 217 blocks (about 2 MB), with Ferguson’s
technique, the probability of an adversary forging a 32-bit tag is 2−16 instead
of optimal 2−32. Furthermore, a successful forgery can also compromise the au-
thentication key and lead to confidentiality attacks.

Many nonce-based AE schemes suffer catastrophic confidentiality and in-
tegrity failures when the nonce is repeated, including GCM [21] and OCB [26].
Hence, Rogaway and Shrimpton introduced the notion of Deterministic Authen-
ticated Encryption (DAE) [27] at EUROCRYPT 2006, with the primary purpose
of addressing the key-wrap issue, as well as the nonce-misuse issue.

Numerous DAE schemes have been proposed, including SIV [27], GCM-
SIV [13], AES-GCM-SIV [12], and Deoxys-II [19]. All these schemes combine
a conventional IV-based encryption scheme (e.g., CTR mode) and a PRF-secure
authentication scheme. The security of SIV does not depend on the freshness of
nonce. Since SIV requires two independent keys, it increases the key management
overhead. In 2009, Iwata and Yasuda proposed a single-key mode of operation
named HBS [18] to achieve the DAE goal. HBS also accelerated the speed by
employing a polynomial universal hashing rather than blockcipher-based MAC.
Subsequently, they proposed BTM [17], which requires only one blockcipher key
as HBS and does not require the decryption algorithm of the underlying block-
cipher, whereas HBS does.

Schemes like Deoxys-II [19] and HBS [18] suffer from the so-called birthday
attack. Assuming that the block size of the underlying primitive is 128 bits,
after about 264 queries, adversaries will obtain a successful attack with high
probability. For example, Ferguson [8] proposed a birthday-bound forgery attack
on OCB. BBB schemes are secure for above 2n/2 queries, where n is the block
size of the underlying primitive. BBB security is, therefore, a desirable goal for
DAE.

In 2016, Forler et al. [10] proposed a beyond-birthday-bound DAE scheme
named DCT (Deterministic Counter in Tweak), which is inspired by the CTRT
(CounTeR in Tweak) encryption scheme [23] and the BRW polynomial [4]. DCT
encodes τ bits of redundancy and then encrypts it using the Hash-Counter [6,22]
approach to obtain a BBB DAE scheme. DCT can obtain different integrity
strengths by selecting different values of τ . They also proposed an efficient im-
plementation that requires only a single key.

Small Stretch Problem of the DCT Scheme and How to Fix it 3

DCT uses a BBB encryption scheme, a 2n-bit SPRP, and a BRW (Bernstein
Rabin Winograd) polynomial to instantiate its underlying universal hash func-
tions (UHFs), which were proposed by Bernstein [4] in 2007, based on the work
of Rabin and Winograd [24]. The BRW polynomial is faster than the UHFs used
by GCM because the former requires only half as many multiplications over
finite fields. The BRW polynomial is widely used in many schemes, including
tweakable enciphering schemes [29, 30], message authentication codes (MACs)
schemes [5], universal hash function [11], authenticated encryption schemes [10],
etc.

Our contributions. In this paper, we describe several forgery attacks on the
DCT scheme. Our attack results are summarized in Table 1.

1) We show that although DCT employs the BRW polynomial function to in-
stantiate its UHF, it still suffers from a small stretch problem similar to that
of GCM. When τ is small, we consider the case where the message length is
fixed in Section 5.2. Adversaries can linearize the UHFs of DCT by query-
ing for particular structured (2u+2 − 2)-block messages where 2 ≤ u ≤ τ ,
and then attack the integrity of DCT with 2τ−u decryption queries. This
attack can efficiently balance the space complexity O(2u+2) and the time
complexity O(2τ−u) for a user-selected parameter u.

2) We extend this attack while the message length is no longer limited to 2u+2−
2, making our attacks more general. We further find that 2u+2 − 3 is the
minimum message length needed to perform our forgery attack mentioned
above when u is fixed.

3) To solve the above small stretch problem, we propose a variant of DCT
named Robust DCT (RDCT) without minimal modification, and we prove
the DAE security of RDCT. When τ is small, our proof shows that a suc-
cessful forgery attack requires O(2τ) decryption queries.

Table 1. Comparing the attack complexity among GCM, DCT, and RDCT schemes.
n is the size of the message block. m is the maximum number of blocks of a query. q
is the number of queries. τ is the number of bits in the GCM tag or the redundancy
of DCT and RDCT. u is a user-selected parameter, 2 ≤ u ≤ τ .

Scheme Provable security
Query complexity Query

Ref.
Encryption Decryption length

GCM O(q
2m2

2n
+ qm

2τ
) 1 2τ−u 2u+1 [9]

DCT O(q
2m2

22n
+ qm2

2τ
) 1 2τ−u 2u+2 − 2 Sect. 5.2

2u+2 − 3 Sect. 5.3

RDCT O(q
2m2

22n
+ q

2τ−q
) 0 2τ 1 Sect. 6

Table 1 compares the complexity of the attack among GCM, DCT, and
RDCT. GCM’s attack requires one encryption query and 2τ−u decryption queries

4 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

with 2u+1 length messages. However, our attack on DCT requires a longer mes-
sage length than the attack on GCM, but the query complexity for attacking
both schemes is at the same magnitude. The core of our attack is to calculate
the difference D, which only needs to be done once for both schemes. We remark
that we only attack the DCT scheme with a small stretch length. When users
select 2n-bit stretch, the complexity of our attack is impracticable.
Organization of the paper. The paper is structured as follows: after Section 3
reviews the linear modification technique and Section 4 introduces the DCT
scheme, Section 5 discusses the small stretch problem of DCT, Section 6 presents
our new scheme named RDCT. Section 7 gives a summary of this work.

2 Preliminaries

2.1 Notations

We use lowercase letters x, y for integers, uppercase letters X,Y for strings or
functions, and curlicue uppercase letters X ,Y for sets. Let X∥Y represent the
concatenation of strings X and Y , and let X ⊕ Y represent the result of their

bitwise XOR. We denote ∅ as the empty set, |X| for the length of X, x
$←− X

for the element x chosen uniformly at random from the set X . We define Pr[V]
as the probability of event V . We define Perm(S) as the set of all permutations

on S; P̃erm(T ,S) as the set of all tweakable permutations on S with nonempty
tweak space T . We define Z+ as the set of positive integers. We define MSBτ as
the most significant τ bits and LSBτ as the least significant τ bits. We define
X as the 128-bit coefficients vector of a polynomial over GF(2) corresponding
to an element X ∈ GF(2128).

We assume that an adversary A can interact with several given oracles as
black boxes that run in time at most t and make at most q queries of at most
m blocks in total, and we denote by AO ⇒ b where b = 0 or 1 the output of A
after interacting with an oracle O. We write

AdvP
E(A) := |Pr[AE ⇒ 1]− Pr[AI ⇒ 1]|,

as the advantage of A to distinguish between oracles E and I, where P is the
security goal, E is the real cryptographic primitive, and I is the ideal primitive.

We define AdvP
E(q,m, t) := maxA

{
AdvP

E(A)
}

as the maximum of AdvP
E(A)

over all adversaries against the P-security of E that run in time at most t and
make at most q queries of at most m blocks in total.

2.2 Definition of Universal Hash Functions

Definition 1 (Universal Hash Functions). Let X ⊆ {0, 1}∗,Y ⊆ {0, 1}n, K
is a key space. Let H : K × X → Y denote hash function. H is called ϵ-almost-
universal (ϵ-AU), such that for all distinct elements X,X ′ ∈ X , it holds that

Pr[K
$←− K : HK(X) = HK(X ′)] ≤ ϵ.

Small Stretch Problem of the DCT Scheme and How to Fix it 5

H is called ϵ-almost-XOR-universal (ϵ-AXU), such that for all distinct ele-

ments X,X ′ ∈ X and Y ∈ Y, it holds Pr[K
$←− K : HK(X)⊕HK(X ′) = Y] ≤ ϵ.

2.3 Security of (Tweakable) Blockciphers

Definition 2 ((Strong) PRP Advantage). Fix integers n, k ≥ 1. Let E :
{0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and A(A′) be an adversary with

access to an oracle (two oracles). Let K
$←− {0, 1}k and π

$←− Perm({0, 1}n).
Then, the advantages PRP and SPRP of A with respect to E are defined as

AdvPRP
E (A) := |Pr[AEK ⇒ 1]−Pr[Aπ ⇒ 1]| and AdvSPRP

E,E−1(A) := |Pr[AEK ,E−1
K

⇒ 1]− Pr[Aπ,π−1 ⇒ 1]|, respectively.

Definition 3 ((Strong) Tweakable PRP Advantage). Fix integers n, k ≥
1. Let T denote a nonempty set. Let Ẽ : {0, 1}k × T × {0, 1}n → {0, 1}n be
a tweakable blockcipher and A be an adversary with access to an oracle (two

oracles). Let K
$←− {0, 1}k and π̃

$←− P̃erm(T , {0, 1}n). Then, the advantages

TPRP and STPRP of A with respect to Ẽ are defined as AdvTPRP
Ẽ

(A) :=

|Pr[AẼK ⇒ 1] − Pr[Aπ̃ ⇒ 1]| and AdvSTPRP
Ẽ,Ẽ−1 (A) := |Pr[AẼK ,Ẽ−1

K ⇒ 1] −
Pr[Aπ̃,π̃−1 ⇒ 1]|, respectively.

2.4 Security of IV-Based Encryption Schemes

Define the nonempty IV space IV, the nonempty key space K, the message space
M ⊆ {0, 1}∗ and the ciphertext space C ⊆ {0, 1}∗. An IV-based encryption
scheme [2] is a tuple Π = (E ,D) of encryption E : K × IV × M → C and
decryption D : K × IV × C → M algorithms. For any inquiries M , encryption

oracle samples uniformly at random IV
$←− IV and computes the ciphertext

C ← EIVK (M). The real oracle EK outputs (IV ∥C), and the random oracle $E

outputs with a random string as long as |IV ∥EIVK (M)|.

Definition 4 (ivE Advantage). K
$←− K, let Π = (E ,D) be an IV-based en-

cryption scheme. Let A be an adversary with access to an oracle. Then, the ad-

vantage ivE of A over Π is defined as AdvivE
Π (A) := |Pr[AEK ⇒ 1]−Pr[A$E ⇒

1]|.

3 Linear Modification Technique

Each element X ∈ GF(2128) can be represented by a 127-degree polynomial

Poly(X) over GF(2). We denote X =

 x1

...
x128

 as the column vector of the

coefficients of Poly(X) over GF(2) and X
T
as the transpose of X.

6 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

3.1 Multiplication operation

The function FC(X) = C · X over GF(2128) with irreducible polynomial p(x)
for a constant field element C is a linear function. For each C there exists a
128× 128 matrix MC over GF(2) such that

C ·X = MCX =
(
M1

C M2
C · · · M128

C

)
·

x1

x2

...
x128

for all X ∈ GF(2128), where M i

C represents the i-th column of MC , 1 ≤ i ≤
128. When X is valued with an orthonormal basis from (1, 0, · · · , 0)T through
(0, · · · , 0, 1)T , we can obtain the following equations to calculate MC :

C · x127 = M1
C

...
C · x = M127

C

C · 1 = M128
C .

Therefore, each column vector of MC is linear combinations of C, and C · xi

can be seen as the C left-shifted by i bits, 0 ≤ i ≤ 127. When it occurs overflow,
we need to modulo the coefficient of p(x).

3.2 Square operation

Due to the fact that GF(2128) is a field of characteristic of 2, which implies
that (A + B)2 = A2 + B2 for any A,B ∈ GF(2128). Therefore, the function
FS(X) = X2 over GF(2128) with irreducible polynomial p(x) is a linear function.
Thus, there exists a fixed matrix MS such that

X2 = MSX =
(
M1

S M2
S · · · M128

S

)
·

x1

x2

...
x128

for all X ∈ GF(2128). When X is valued with an orthonormal basis from
(1, 0, · · · , 0)T through (0, · · · , 0, 1)T , we can obtain the following equations to
calculate MS :

(x127)
2
= M1

S
...

x2 = M127
S

1 = M128
S .

Therefore, each column vector of MS can be seen as the 1 left-shifted by 2i
bits; when it occurs overflow, we need to modulo the coefficient of p(x). Note
that MS does not depend on anything except the chosen field representation.
Therefore, MS is a public matrix.

Small Stretch Problem of the DCT Scheme and How to Fix it 7

3.3 Concrete attack

This section introduces Ferguson’s linear modification technique [9], which at-
tacks the GCM’s integrity by changing the ciphertext C := C1∥C2∥ · · · ∥Cm

without changing the tag. Since Ferguson’s attack does not use the associated
data A, we will ignore it. Then the authentication function can be denoted as

T := R⊕
∑m

i=1
CiH

i,

where R = EK(0) is the authentication key, and H = EK(N∥1) is a 128-bit
key generated by encrypting the nonce with a blockcipher EK , C1 = (|A|, |C|)
is length information of the inputs. The truncated tag comprises the most sig-
nificant τ bits of the T , denoted by MSBτ (T). The attacking goal is to find
∆ := ∆1∥∆2∥ · · · ∥∆m such that

MSBτ

(∑m

i=1
∆iH

i
)
= 0τ .

So we can obtain the collision

MSBτ (T) = MSBτ

(
T ⊕

∑m

i=1
∆iH

i
)

for any two ciphertexts C and C ⊕∆ of equal length, which means if we query
GCM to obtain a ciphertext triple (N,C, T), we can forge another variable ci-
phertext triple (N,C⊕∆,T) successfully. The concrete steps of searching ∆ are
as follows.

1. Adjust the search goal to ∆ = ∆20∥∆21∥0n∥∆22∥03n∥∆23∥ · · · where |∆i| =
n. That is to say, search coefficients Di := ∆2i(1 ≤ 2i ≤ m) such that

MSBu(
∑

i
DiH

2i) = 0u,

where the parameter u ≤ τ . We focus on Dis for the reason that only they
can make

∑
i DiH

2i linearization. Since the first ciphertext block encodes
the length information, we do not change it and let D0 = 0n.

2. Represent the linear function T1 =
∑

i DiH
2i in terms of H by matrix over

finite fields. Consider T1 as bit vector T1 and H as H:

T1 =
∑

i
MDi(MS)

iH,

where the matrix MDi
represents the operation corresponding to multipli-

cation with Di, and the elements in MDi are all linear combinations of bits
of Di. MS is a fixed matrix that represents the square operation.
To force u bits of the T1 to zero, we need to create 128× u linear equations
about Di such that u row of

∑
i MDi(MS)

i is completely zero. When the
number of Di is u+ 1, which corresponds to 128× (u+ 1) free variables (or
unknowns), the number of unknowns exceeds the number of equations, we
can obtain nontrivial solutions of ∆, and the size of the solution set of the
linear system is at least 2128.

8 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

3. We continue to perform about 2τ−u decryption queries in search of the re-
maining τ − u bits tag corresponding to the modified ciphertext C ⊕ ∆,
leading to a successful forgery (N,C ⊕∆,T).

For example, when GCM uses a 32-bit tag, the attack consists of the following
steps: First, assume that adversaries can obtain the ciphertext for a message
of m = 217 blocks (about 2 MB) by encryption queries, which corresponds to
17×128 unknowns. Second, suppose that the number of unknowns is greater than
the number of linear equations; adversaries can calculate nontrivial solutions of
D1, D2, · · · , D17 that make the 16 rows of the

∑
i MDi

(MS)
i equal to zero by

creating 16× 128 constraint equations about Di, 1 ≤ i ≤ 17. Third, adversaries
continue to perform about q = 216 decryption queries in search of the remaining
16 bits tag corresponding to the modified ciphertext, leading to a successful
forgery.

More generally, assuming the length of the truncated tag is τ , adversaries
know the ciphertext of a message of m = 2u+1 blocks and can successfully obtain
a forge with q = 2v queries, which u + v = τ . This technique can efficiently
balance the number of message blocks m selected by the adversary and the
number of queries q needed for the forgery.

4 A DAE Scheme: DCT

In this section, we introduce the notion of DAE [27] and the DCT scheme [10].

4.1 DAE Scheme

DAE scheme [27] is a tuple Π̃ = (Ẽ , D̃) of deterministic algorithms Ẽ : K×A×
M→ C and D̃ : K×A×C →M∪{⊥} with key space K, associated-data spaceA,
and message/ciphertext spaceM, C ⊆ {0, 1}∗. For each K ∈ K, A ∈ A,M ∈M,

ẼK maps (A,M) to an output C such that |C| = |M | + τ for fixed stretch

length τ . D̃K(A,C) outputs the corresponding message M if C is valid and ⊥
otherwise, where ⊥ is a symbol of decryption failures. DAE scheme can remove
the overhead of nonce by exploiting the existing entropy or redundancy in the
inputs; However, if nonce needs to be input when using a DAE scheme, users
only need to take part of A as the nonce.

DAE scheme achieves both confidentiality and integrity. Confidentiality means
that adversaries cannot obtain any information about plaintext from the corre-
sponding ciphertext except the length; Integrity means adversaries cannot forge
a fresh (not previously generated by the sender) and valid (pass the decryption
oracle’s verification) message. We define detPriv,detAuth as the confiden-
tiality and integrity of the DAE scheme, respectively. The formalized definitions
are as follows.

Definition 5 (Confidentiality and Integrity Advantages). Let Π̃ = (Ẽ , D̃)
be a DAE scheme and K ← K. Let A be adversaries; A has access to one or

Small Stretch Problem of the DCT Scheme and How to Fix it 9

two oracles O1 and O2. A are not allowed to ask O2 as input the result of
querying O1, and vice versa. A does not repeat a query. Then, the detPriv
and detAuth advantages of A with respect to Π̃, are defined as

AdvdetPriv
Π̃

(A) :=
∣∣∣Pr [AẼK ⇒ 1

]
− Pr

[
A$Ẽ ⇒ 1

]∣∣∣ ,
AdvdetAuth

Π̃
(A) := Pr

[
AẼK ,D̃K forges

]
,

where “forges” means that A asks D̃K with (A,C) and returns anything other
than ⊥ for at least one query among multiple decryption queries.

Rogaway and Shrimpton [27] introduced the “All-in-One” definition, which
is equivalent to the two-part notion that requires deterministic confidentiality
detPriv and deterministic authenticity detAuth. The relation between it and
detPriv and detAuth is as follows.

Theorem 1 (All-in-One DAE Advantage [10, 28]). Let Π̃ = (Ẽ , D̃) be a

DAE scheme and K ← K. Let A be a DAE adversary on Π̃ with access to two
oracles O1 and O2, A are not allowed to ask O2 as input the result of querying
O1. Then, the All-in-One DAE advantages of A with respect to Π̃ is defined as

AdvDAE
Π̃

(A) :=
∣∣∣Pr [AẼK ,D̃K ⇒ 1

]
− Pr

[
A$Ẽ,⊥

⇒ 1
]∣∣∣ ,

where A runs in time at most t and asks qe queries to its left oracles, and asks qd
queries to its right oracles, A asks at most m blocks in total. Then, there exists
a detPriv adversary A1 and a detAuth adversary A2 both on Π̃, such that

AdvDAE
Π̃

(A) ≤ AdvdetPriv
Π̃

(A1) +AdvdetAuth
Π̃

(A2) ,

where A1 and A2 make at most q = qe+qd queries with a maximum of m blocks
and run in time O(t) each.

4.2 The DCT Scheme

Forler et al. [10] proposed the DCT scheme, a beyond-birthday-bound DAE
scheme. We show the encryption of DCT in Figure 1.

Fix the parameters n, τ ≥ 1 with τ ≤ 2n. Let µ = 2n− τ . Let K1,K2,K3 and
K4 be nonempty key spaces and K = K1×K2×K3×K4. Let A ⊆ {0, 1}∗,M⊆
{0, 1}≥µ, C ⊆ {0, 1}≥2n denote the associated-data space, message space, and ci-
phertext space, respectively. Let H : K1×K2×A×{0, 1}∗ → {0, 1}2n be an AXU
hash function with key space K1×K2. Let E : K3×{0, 1}2n → {0, 1}2n be a per-
mutation with key space K3. Let Π1 = (E ,D) be an IV-based encryption scheme
with key space K4 and IV space IV = {0, 1}2n. Let Π2 = (Encodeτ ,Decodeτ)
be an encode scheme with encoding function and decoding function

Encodeτ :M→ {0, 1}2n × {0, 1}|M|−2n+τ ,

Decodeτ : {0, 1}2n × {0, 1}|M|−2n+τ →M∪ {⊥},

10 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

X

Y

L
M

NCODEE

M

R
M

L
M

R
MA

L
C

R
C

3K
E

1 2||K K

4K

Fig. 1. The Encodeτ (left) process. The encryption process of DCT (right).

where Encodeτ is an injection, encodes τ bits redundancy into the input. The
τ bits redundancy is fully contained in the left part of the output. For ex-
ample, Encodeτ (M) = (ML,MR) where ML = 0τ∥MSBµ(M) and MR =
LSB |M |−2n+τ (M). The decoding function returns a unique M ∈ M such that

Encodeτ (M) = (X,Y) for (X,Y) ∈ {0, 1}2n × {0, 1}|M|−2n+τ if such an M

exists; otherwise, it returns ⊥. Then the DCT scheme DCTH,E,Π1,Π2 = (Ẽ , D̃)
based on H, E,Π1 and Π2 is in Algorithm 1.

Algorithm 1 Encryption and decryption of the DCT scheme

1: function ẼK1,K2,K3,K4(A,M)
2: (ML,MR)← Encodeτ (M)
3: CL ← EK3

(
ML ⊕HK1∥K2

(A,MR)
)

4: CR ← EK4 (CL,MR)
5: return (CL∥CR)
6: end function

7: function D̃K1,K2,K3,K4(A,C)
8: (CL, CR)← C
9: MR ← DK4 (CL, CR)
10: ML ← E−1

K3
(CL)⊕HK1∥K2

(A,MR)
11: return Decodeτ (ML∥MR)
12: end function

4.3 Instantiation of DCT

The instantiation scheme of DCT employs a CTR-like encryption scheme as
EK4 (IV,M) = eK4(IV)⊕M where eK4 generates a |M |-bit stream. Due to the
nonce length of the Π1 being 2n bits, DCT employs a 2n-bit permutation as E.
Π2 encodes the τ bits zero into the message. DCT uses the BRW polynomial to
instantiate its underlying UHFs.

Small Stretch Problem of the DCT Scheme and How to Fix it 11

The attack in Section 5 focuses on the authentication security of the DCT
instantiation scheme. In the next section, we will show that DCT suffers from
the so-called small stretch problem.

5 Attacks to DCT with Small Stretch

In Section 5.1, we give a brief introduction to the UHFs used by DCT and the
detailed steps of our attack. In Section 5.2, we first analyze the small stretch
problem of DCT with a special fixed message length. Next, in Section 5.3, we
consider the case while message length is no longer limited as a fixed value.
Finally, in Section 5.4, we give a brief analysis of the security bounds of DCT.

5.1 The Universal Hash Function in DCT

In DCT, the universal hash function based on the BRW polynomial can be
denoted as:

HK1∥K2
(M) = KBRWK1

(M1, · · · ,Mm)∥KBRWK2
(M1, · · · ,Mm),

whereK1,K2 ∈ {0, 1}n are independent keys andKBRWK (M) = K·BRWK(M)
is defined directly as follows.

Definition 6 (KBRW Polynomial Function [10]). Given a m-block mes-
sage M = (M1, · · · ,Mm), K ∈ {0, 1}n, the polynomial function KBRWK (M) is
defined as follows:

KBRWK (ε) = 0n;

KBRWK (M1) = M1K;

KBRWK (M1,M2) = M1K
2 ⊕M2K;

KBRWK (M1,M2,M3) = K4 ⊕M1K
3 ⊕M2K

2 ⊕ (M1M2 ⊕M3)K;

KBRWK (M1, · · · ,Mm) = KBRWK (M1, · · · ,Mt−1)(K
t ⊕Mt)⊕

KBRWK (Mt+1, · · · ,Mm) if t ≤ m < 2t for t = 2i, i ≥ 2.

where ε represents the empty string. All operations in the KBRW function are
performed over GF(2n), the Galois Field with a given irreducible polynomial
p(x) of degree n. For n = 128, p(x) = x128 + x7 + x2 + x+ 1.

Since the associated data A are irrelevant to our attacks, we ignore them for
convenience. For DCT with τ ≤ 2n and A = ε, when we obtain the ciphertext
CL∥CR corresponding to (A,M) = (ε,ML∥MR), we have the following equation:

MSBτ (ML ⊕KBRWK (MR)) = 0τ .

12 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

We can query the decryption of DCT with (A,CL∥C ′
R) where only the value

of CR is modified to C ′
R. Note that the CTR-like encryption scheme, if and only

if the following equation establishes that the forgery is successful:

MSBτ (ML ⊕KBRWK (MR ⊕ CR ⊕ C ′
R)) = 0τ .

So the forgery attack is reduced to the problem of looking for a modifica-
tion string D = CR ⊕ C ′

R = MR ⊕M ′
R while keeping MSBτ (KBRWK (M)) =

MSBτ (KBRWK (M ⊕ D)), the same problem in Section 3 but with a different
universal hash function.

The core of our attack is to choose a particular structured message M and
set some blocks of D as unknowns, making KBRWK (M)⊕KBRWK (M ⊕D) a
linear function of K. The generic steps of the attack are as follows:

1. By selecting a particular structured message M = ML∥MR to query the
encryption of DCT, we can obtain the corresponding ciphertext (CL, CR).

2. Explore using the technique stated in Theorem 2, we can makeKBRWK (M)⊕
KBRWK (M ⊕D) become a linear function of K; After that, using the tech-
nique outlined in Section 3 for this linearized function, we can calculate a
set of solutions D and for each solution D ∈ D which satisfies:

MSBu(KBRWK (MR)⊕KBRWK (MR ⊕D)) = 0u,

where u ≤ τ .

3. We query the decryption of DCT with (CL∥CR⊕D) and observe the output
to determine whether the forgery attack is successful or not.

If the decryption output is ⊥, we select a new difference D from D and make
the same decryption queries. We repeat the preceding step approximately
2τ−u times until we obtain a successful forgery that the decryption output
does not equal ⊥.

Since the associated data has the same effect as the message, the attacks
discussed in the following sections still work when A ̸= ε.

5.2 An Attack to DCT with Fixed Message Length

Assume adversaries query the KBRW function with a message of length m =
2u − 1. When u = 2,M = (M1,M2,M3), consider

KBRWK (M) = K4 ⊕M1K
3 ⊕M2K

2 ⊕ (M1M2 ⊕M3)K, (1)

let M1 remain constant (D1 = 0), and only modify M2 and M3 by unknowns D2

and D3, respectively, so that KBRWK (M)⊕KBRWK (M ⊕D) = D2K
2 ⊕D3K

is a linear function of K, where D = (D1, D2, D3), and we can calculate D2 and
D3 by the technique outlined in Section 3.

Small Stretch Problem of the DCT Scheme and How to Fix it 13

When u = 3, the situation becomes complicated, consider

KBRWK (M) = K8 ⊕M1K
7 ⊕M2K

6 ⊕ (M1M2 ⊕M3)K
5

⊕ (M4 ⊕ 1)K4 ⊕ (M1M4 ⊕M5)K
3 ⊕ (M2M4 ⊕M6)K

2

⊕ (M1M2M4 ⊕M3M4 ⊕M5M6 ⊕M7)K.

(2)

We choose M4, M6, and M7 as blocks modified by unknowns. Still, some message
blocks cannot be chosen arbitrarily: For example, the coefficient of K4 is M4⊕1,
and the coefficient of K3 is M1M4⊕M5; To obtain the final linear function, D1

must be chosen as 0.

For u ≥ 2, to linearize KBRWK (M) ⊕ KBRWK (M ⊕ D), we divide the
message blocks into six categories of disjoint set: Vu

0 , Vu
1 , Au

0 , Au
1 , Fu

0 and Fu
1

for the KBRW function, which specifies how the input messages should be valued.

– Vu
0 and Vu

1 are sets of blocks that can be chosen arbitrarily and modified by
unknowns. If the block Mi appears as the coefficient of a power term in the
form of Mi ⊕ 1, we put it in Vu

1 , otherwise in Vu
0 ;

– Au
0 and Au

1 are sets of blocks that can be chosen arbitrarily but not modified
by unknowns. The difference between Au

0 and Au
1 is the same as the above;

– Fu
0 and Fu

1 are sets of blocks that are fixed as 0 and 1 respectively and not
modified by unknowns. The difference between Fu

0 and Fu
1 is the same as

above.

For example, when u = 2, consider Equation (1). Let F2
0 = F2

1 = V2
1 = A2

1 =
∅, V2

0 = {M2,M3} and A2
0 = {M1}, which means that the value of M1 should

remain constant in our forgery attacks (D1 = 0); And we can calculate D2 and
D3 so that KBRWK (M)⊕KBRWK (M ⊕D) is a linear function of K.

For u > 2, we intend to obtain these sets recursively. Equation (2) can also
be denoted as:

KBRWK (M) = KBRWK (M1,M2,M3)(K
4 ⊕M4)⊕KBRWK (M5,M6,M7).

Similarly to the analysis of KBRWK (M1,M2,M3), in KBRWK (M5,M6,M7) we
choose V3

0 by the case with u = 2, and they originate from the subscript plus
4 of elements in V2

0 , as shown in Figure 2, so that V3
0 = {Mi+22 |Mi ∈ V2

0} =
{M6,M7}. Thus, for general u > 2, we have Vu

0 = {Mi+2u−1 |Mi ∈ Vu−1
0 }.

Consider the general case when u ≥ 2, we formalize the above deduction as
the following Theorem 2.

Theorem 2. For the KBRW function, assume m = 2u − 1, u ≥ 2. Let V2
0 =

{M2,M3}, A2
0 = {M1}, and initialize the remaining set to ∅. We can obtain the

14 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

· · ·

: subscript plus 4.: subscript plus 4.
: subscript plus 8.: subscript plus 8.
: subscript plus 16.: subscript plus 16.
: subscript plus 32.: subscript plus 32.

: subscript plus 4.
: subscript plus 8.
: subscript plus 16.
: subscript plus 32.

2 3

4 6 7

8 12 14 15

16 24 28 30 31

32 48 56 60 62 63

3 (2) :

7 (3) :

15 (4) :

31 (5) :

63 (6) :

m u M M

m u M M M

m u M M M M

m u M M M M M

m u M M M M M M

= =

= =

= =

= =

= =

Fig. 2. Calculating the set Vu
0 and Vu

1 recursively, where the arrow indicates that the
subscript plus t.

following recursions:

Vu
0 = {Mi+2u−1 |Mi ∈ Vu−1

0 },

Vu
1 = {M2u−1}

⋃
{Mi+2u−1 |Mi ∈ Vu−1

1 },

Au
0 = Vu−1

0

⋃
{Mi+2u−1 |Mi ∈ Au−1

0 },

Au
1 = Vu−1

1

⋃
{Mi+2u−1 |Mi ∈ Au−1

1 },

Fu
0 = Fu−1

0

⋃
{Mi+2u−1 |Mi ∈ Fu−1

0 }
⋃
Au−1

0 ,

Fu
1 = Fu−1

1

⋃
{Mi+2u−1 |Mi ∈ Fu−1

1 }
⋃
Au−1

1 ,

where i ∈ Z+. Then, after assigning the message blocks according to the recur-
sions above, KBRWK (M)⊕KBRWK (M ⊕D) is a linear function of K.

Proof. When u = 3, by analyzing KBRWK (M1, · · · ,M7), we can obtain the
following conclusions:

V3
0 = {Mi+22 |Mi ∈ V2

0} = {M6,M7},

V3
1 = {M22}

⋃
{Mi+22 |Mi ∈ V2

1} = {M4},

A3
0 = V2

0

⋃
{Mi+22 |Mi ∈ A2

0} = {M2,M3,M5},

A3
1 = V3

1

⋃
{Mi+22 |Mi ∈ A2

1} = ∅,

F3
0 = F2

0

⋃
{Mi+22 |Mi ∈ F2

0}
⋃
A2

0 = {M1},

F3
1 = F2

1

⋃
{Mi+22 |Mi ∈ F2

1}
⋃
A2

1 = ∅,

which means when M2,M3 and M5 remain constant (D2 = D3 = D5 = 0),
and let M1 = 0, we can calculate D4, D6 and D7 using the linear modification
technique stated in Section 3 such that KBRWK (M) ⊕ KBRWK (M ⊕ D) is a
linear function of K. Therefore, the conclusion is true.

Small Stretch Problem of the DCT Scheme and How to Fix it 15

Suppose that the conclusion is true in the case u− 1. Next, we consider the
KBRW function in case u:

KBRWK (M1, · · · ,Mm) = KBRWK (M1, · · · ,M2u−1−1)(K
2u−1

⊕M2u−1)

⊕KBRWK (M2u−1+1, · · · ,Mm).
(3)

Since the subscript of coefficients in KBRWK (M2u−1+1, · · · ,Mm) is larger
than KBRWK (M1, · · · ,M2u−1−1) by 2u−1, therefore, as shown in Figure 2, we
have Vu

0 = {Mi+2u−1 |Mi ∈ Vu−1
0 } and {Mi+2u−1 |Mi ∈ Vu−1

1 } ⊆ Vu
1 .

To linearize the above two functions, we need to assign 0 and 1 to each block
in Fu−1

0

⋃
{Mi+2u−1 |Mi ∈ Fu−1

0 } and Fu−1
1

⋃
{Mi+2u−1 |Mi ∈ Fu−1

1 }, respec-
tively. Thus, we have:

Fu−1
0

⋃
{Mi+2u−1 |Mi ∈ Fu−1

0 } ⊆ Fu
0 ,

Fu−1
1

⋃
{Mi+2u−1 |Mi ∈ Fu−1

1 } ⊆ Fu
1 .

Assume the linearized Equation (3) can be denoted as:

LK(M1, · · · ,Mm) = LK(M1, · · · ,M2u−1−1)(K
2u−1

⊕M2u−1)

⊕ LK(M2u−1+1, · · · ,Mm),
(4)

the leading term of LK(M1, · · · ,M2u−1−1)M2u−1 and LK(M2u−1+1, · · · ,Mm) are

M2u−1K2u−1

and K2u−1

, respectively. Thus, the coefficient of K2u−1

in Equa-
tion (4) isM2u−1⊕1. Therefore, we have Vu

1 = {M2u−1}
⋃
{Mi+2u−1 |Mi ∈ Vu−1

1 }.
We continue linearizing Equation (4). Since LK(M1, · · · ,M2u−1−1) times

K2u−1

raises the degree of each term by 2u−1, so none of the degrees of each
term in this function are powers of 2 expect the leading term K2u . To linearize it,
each block in Vu−1

0

⋃
{Mi+2u−1 |Mi ∈ Au−1

0 } and Vu−1
1

⋃
{Mi+2u−1 |Mi ∈ Au−1

1 }
should keep unchanged when forgery. Thus, we have:

Au
0 = Vu−1

0

⋃
{Mi+2u−1 |Mi ∈ Au−1

0 },

Au
1 = Vu−1

1

⋃
{Mi+2u−1 |Mi ∈ Au−1

1 }.

BecauseM2u−1 ∈ Vu
1 , when linearizing LK(M1, · · · ,M2u−1−1)M2u−1 , we need

to assign each block in Au−1
0 and Au−1

1 as 0 or 1, respectively. So we have:

Fu
0 = Fu−1

0

⋃
{Mi+2u−1 |Mi ∈ Fu−1

0 }
⋃
Au−1

0 ,

Fu
1 = Fu−1

1

⋃
{Mi+2u−1 |Mi ∈ Fu−1

1 }
⋃
Au−1

1 .

Therefore, the conclusion is true in case u.
□

After linearizing the KBRW function using the technique stated in the above
Theorem 2, we can create a linear system S containing u× 128 linear equations
and (u + 1) × 128 unknowns to calculate a solution set D using the technique

16 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

stated in Section 3, and for each solutionD ∈ D, it satisfiesMSBu(KBRWK (M)⊕
KBRWK (M ⊕D)) = 0u, u ≤ τ . The size of D is at least 2128.

Next, consider the latter part of the stretch. For eachD ∈ D, we can represent
the linearized KBRW function LK by matrix over finite fields:

LK =
∑
i

MDi(MS)
iK =

0 0 · · · 0
...

...
...

0 0 · · · 0
αu+1,1 αu+1,2 · · · αu+1,128

...
...

...
ατ,1 ατ,2 · · · ατ,128

...
...

...

·

k1
...

ku+1

...
kτ
...

k128

, (5)

where αi,j are all linear combinations of D, 1 ≤ i, j ≤ 128.
To make the least significant τ − u bits of the stretch all zeros, we can list a

series of new linear equations about K from the (u+ 1)-th row to the τ -th row
of

∑
i MDi

(MS)
i in Equation (5):
αu+1,1k1 + αu+1,2k2 + · · ·+ αu+1,128k128 = 0
αu+2,1k1 + αu+2,2k2 + · · ·+ αu+2,128k128 = 0

· · ·
ατ,1k1 + ατ,2k2 + · · ·+ ατ,128k128 = 0,

(6)

where the size of equations is τ − u < 128. When the key is fixed, αi,1k1 +
αi,2k2+· · ·+αi,128k128 in each rows of Equation (6) becomes linear combinations
of αi,j , u+1 ≤ i ≤ τ, 1 ≤ j ≤ 128, it’s also linear combinations of D, and it must
be in the set D.

Equation (6) are τ − u linear constraints on D, and we add these equations
into the aforementioned linear system S. As a result, the new linear system
S ′ has nontrivial solutions since the number of equations is s × 128 + (τ − u),
which is fewer than the number of unknowns (s + 1) × 128. The size of the
new solution set D′ is at least 2128−(τ−u). The above analysis indicates that our
forgery attack is effective. For each K ∈ K, adversaries can always find a suitable
solution D′ ∈ D′ to satisfies MSBτ (KBRWK (M)⊕KBRWK (M⊕D′)) = 0τ with

probability 2128−(τ−u)

2128 = 2−(τ−u).
Finally, consider the universal hash function H defined in Section 5.1, adver-

saries can query ẼK1,K2,K3,K4(A,M) = (CL∥CR) (defined in Algorithm 1) and
control the inputs of H by modify CR. We can convert the above attack on the
KBRW function into an attack on H. Since H will first attach the length infor-
mation at the end and then process it with two independent KBRW functions,
we choose a specially structured message of length 2u − 2 to query H, and the
total message length after adding the length information block is 2u − 1.

For τ = 32, our forgery attack on H is as follows. First, assume adversaries
know the ciphertext for a message consisting of m = 218 − 2 blocks (about
4 MB), corresponding to 17 × 128 unknowns. Second, by applying the tech-
nique stated above, adversaries can calculate a solution set D while keeping

Small Stretch Problem of the DCT Scheme and How to Fix it 17

MSB16(HK1∥K2
(A,MR)) = MSB16(HK1∥K2

(A,MR ⊕ D)) for each D ∈ D.
Third, adversaries continue to make 216 decryption queries for the modified
ciphertext (CL∥CR ⊕D) by selecting a new difference D from D to match the
remaining 16 bits of the stretch. Note that adversaries need to perform about
q = O(216) queries to obtain a successful forgery. Therefore, our attack can fail
the integrity with fewer queries when τ is small.

5.3 An attack to DCT with Arbitrary Length Message

In Section 5.2, we fix the message length that the adversaries query the KBRW
function to m = 2u − 1, which is a particular type of attack that does not have
strong universality. Users usually select arbitrary-length messages to query the
scheme. Therefore, this section considers how to linearize the KBRW function
with arbitrary-length messages.

For arbitrary m, we define six categories of disjoint sets of message blocks
as V m

0 , V m
1 , Am

0 , Am
1 , Fm

0 and Fm
1 for the KBRW function, they are similar

to the sets defined in Section 5.2, except that the former targets messages of
arbitrary length while the latter targets messages of length m = 2u − 1. Next,
we generalize the above conclusion to Theorem 3.

Theorem 3. For the KBRW function, assuming the message length is m, t ≤
m < 2t, t = 2u, u ≥ 2. Let V 1

0 = {M1}, V 2
0 = {M1,M2}, V 3

0 = {M2,M3},
A3

0 = {M1} and initialize the remaining set to ∅. We can obtain the following
recursions when m ≥ 4:

Am
0 = V t−1

0

⋃
{Mi+t|Mi ∈ Am−t

0 },

Am
1 = V t−1

1

⋃
{Mi+t|Mi ∈ Am−t

1 },

Fm
0 = F t−1

0

⋃
{Mi+t|Mi ∈ Fm−t

0 }
⋃

At−1
0 ,

Fm
1 = F t−1

1

⋃
{Mi+t|Mi ∈ Fm−t

1 }
⋃

At−1
1 .

And we can obtain the following recursions when m ≥ 7:

V m
0 =

{
{Mi+t|Mi ∈ V m−t

0 }
⋃
{Mt}, m < 3t

2

{Mi+t|Mi ∈ V m−t
0 }, otherwise

V m
1 =

{
{Mi+t|Mi ∈ V m−t

1 }, m < 3t
2

{Mi+t|Mi ∈ V m−t
1 }

⋃
{Mt}, otherwise,

where i ∈ Z+. Then, after assigning the message blocks according to the above
recursions, KBRWK (M)⊕KBRWK (M ⊕D) is a linear function of K.

Proof. Assuming the linearized KBRW function can be denoted as:

LK(M1, · · · ,Mm) = LK(M1, · · · ,Mt−1)(K
t ⊕Mt)

⊕ LK(Mt+1, · · · ,Mm), t ≤ m < 2t.
(7)

18 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

However, K2t is the leading term of KBRWK (M1, · · · ,M2u), t = 2u, u ≥ 2.
Therefore, whether the coefficient of Kt is Mt⊕1 or Mt in Equation (7) depends
on whether the leading term of LK(Mt+1, · · · ,Mm) is Kt or not, and it’s true
only when m−t ≥ t/2. Then we have {Mt} ⊆ Fm

1 , otherwise {Mt} ⊆ Fm
0 . Thus,

when m ≥ 7, we have:

V m
0 =

{
{Mi+t|Mi ∈ V m−t

0 }
⋃
{Mt}, m < 3t

2

{Mi+t|Mi ∈ V m−t
0 }, otherwise

V m
1 =

{
{Mi+t|Mi ∈ V m−t

1 }, m < 3t
2

{Mi+t|Mi ∈ V m−t
1 }

⋃
{Mt}, otherwise.

The rest of the proof is the same as Theorem 2 and will not repeat here. □
As we can see, Theorem 2 is a particular case of Theorem 3. Next, we analyze

our attack’s complexity by finding the smallest m satisfies |V m
0 |+ |V m

1 | = u for
a fixed u, u ≥ 2.

Theorem 4. For the KBRW function, m = 2u−2 is the smallest message length
that satisfies |V m

0 | + |V m
1 | = u, u ≥ 2. Then, after assigning the message blocks

according to the above recursions, KBRWK (M)⊕ KBRWK (M ⊕D) is a linear
function of K.

Proof.
Define V m = V m

0

⋃
V m
1 , we have |V 2| = |V 3| = 2. Therefore, m = 22−2 = 2

is the minimal message length in case u = 2.
According to Theorem 3, we have |V m| = |V m−t| + 1. To obtain one more

block that can be chosen arbitrarily and modified by unknowns, set m− t = 2,
solving for the smallest m and t as 6 and 4, respectively. Therefore, m = 23−2 =
6 is the minimal message length in case u = 3.

Assume m = 2u − 2 is the minimal message length in case u. To obtain one
more block that we want, let m′ − t′ = m and solve this equation:

m′ − t′ = 2u+1 − 2− 2u = 2u − 2 = m,

the smallest m′ and t′ are 2u+1−2 and 2u, respectively. Therefore, m′ = 2u+1−2
is the optimal solution in case u+ 1.

□
For a particular m = 2u − 2, u ≥ 2, define new sets Am = Am

0

⋃
Am

1 , and
Fm = Fm

0

⋃
Fm
1 , and we can calculate the size of V m, Am and Fm by the

following expression:

V (m) = u,A(m) =
∑u

i=2
i, F (m) = m− u−

∑u

i=2
i.

Similarly, we can convert this improved attack on the KBRW function into
an attack on H. Adversaries can select a message of m = 2u+2 − 3 blocks and
successfully execute our attack with q = 2v decryption queries (u+ v = τ). Like
the attack in Section 3, this technique can efficiently balance the space and time
complexity required by the attack by flexibly choosing the values of m and q.
Moreover, it is possible to recover the authentication key using the technique
described in Section 5 of [9], which would compromise DCT’s confidentiality.

Small Stretch Problem of the DCT Scheme and How to Fix it 19

5.4 Analysis of the Security Bounds with DCT Instantiation
Scheme

In this section, we analyze the security bounds of DCT. Let Π̃ denote the DCT
scheme and let Ẽ denote the tweakable blockcipher used by the encryption

scheme Π1, K
$←− K. Theorem 3 in [10] describes the DAE security of Π̃. Let A

be an adversary on Π̃ that asks at most q queries of at most m blocks in total
and runs in time at most t. Then, the AdvDAE

Π̃
(A) is upper bounded by

3q2ϵ

2
+

2q2

22n
+

3qϵ · 22n

2τ
+ 3 ·AdvSPRP

Ẽ,Ẽ−1(q,O(t)) + 2 ·AdvivE
Π1

(q,m,O(t)).

For small τ , the security of DCT depends on the leading term qϵ·22n
2τ mostly,

which is related to not only q but ϵ. When DCT are implemented with BRW

Hashing, i.e., ϵ = O(m2

22n) [10], the provable bounds of DCT are O(q
2m2

22n + qm2

2τ),

and we only focus on the term qm2

2τ . Let u+ v = τ , when adversaries make q =

O(2v) decryption queries of m = O(2u+2) blocks, qm2

2τ > 1. We remark that the
security bounds between the above attack and the proof are not contradictory.

As a result, the above analysis shows that DCT has a similar problem as
GCM. The attack succeeds because the stretch part no longer holds the ϵ-AXU
property well when τ is small. Furthermore, it can attack DCT’s confidentiality
by recovering the authentication key using the technique described in Section 5
of [9]. In the following section, we introduce Robust DCT (RDCT), a variant
of the DCT scheme in which the security bound is better than DCT, and the
above attack is invalid for RDCT.

6 How to Fix It: Robust DCT

Our attack works due to the way DCT deals with the stretch. DCT encrypts ML

by XORing it with the result of H, which does not prevent manipulation of the
stretch. To make ML unpredictable, in this section, we slightly modify DCT to
avoid the problem in Section 5 by simply XORing the output of H to the output
of keyed permutation E. Therefore, encryption (resp. decryption) queries to it
will lead to a random left output. We call the new scheme Robust DCT (RDCT).

We show the encryption of RDCT scheme RDCTH,E,Π1,Π2 = (Ẽ , D̃) in Figure 3
and the RDCT scheme in Algorithm 2.

In fact, the modification forms a tweakable blockcipher Ẽ based on HK1∥K2

and EK3
:

ẼK1,K2,K3((A,MR),ML) := EK3

(
ML ⊕HK1∥K2

(A,MR)
)
⊕HK1∥K2

(A,MR) .
(8)

The idea is similar to the paper by Ashur et al. [1], which introduces minor
tweaks, such as an additional XOR, to get a tweakable blockcipher. Moreover,
as a result, we get RDCT, which is an instantiation of UIV construction [6].

20 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

L
M

R
MA

L
C

R
C

L
M

NCODEE

M

R
M

1 2||K K

3K
E

4K

Fig. 3. The Encodeτ process (left). The encryption process of RDCT (right).

Assuming all queries are different and adversaries do not make the output of
encryption (resp. decryption) queries to decryption (resp. encryption) queries.

Ẽ is an STPRP, then encryption (resp. decryption) queries to RDCT will lead
to a random left output CL (resp. ML). This modification will enhance the
confidentiality of the scheme by changing the integrity promised from the ϵ-
AXU property of H to the randomness of ML, which will be recovered from
decryption queries. This modification also makes the stretch length in integrity
independent of the maximal number of message blocks.

Algorithm 2 Encryption and decryption of the RDCT construction

1: function ẼK1,K2,K3,K4(A,M)
2: (ML,MR)← Encodeτ (M)
3: CL ← EK3

(
ML ⊕HK1∥K2

(A,MR)
)
⊕HK1∥K2

(A,MR)
4: CR ← EK4 (CL,MR)
5: return (CL∥CR)
6: end function
7:
8: function D̃K1,K2,K3,K4(A,C)
9: (CL, CR)← C
10: MR ← DK4 (CL, CR)
11: ML ← E−1

K3

(
CL ⊕HK1∥K2

(A,MR)
)
⊕HK1∥K2

(A,MR)
12: return Decodeτ (ML∥MR)
13: end function

In the following, we show the security bounds of the RDCT scheme.

Small Stretch Problem of the DCT Scheme and How to Fix it 21

Lemma 1 (Confidentiality Advantage of RDCT). Let Π̃ = RDCTH,E,Π1,Π2

be as defined in Algorithm 2. Let A be a detPriv adversary on Π̃ that submits
at most qe encryption queries of at most m blocks in total and runs in time at
most t. Then

AdvdetPriv
Π̃

(A) ≤ 3q2eϵ+
qe(qe − 1)

22n
+AdvPRP

E (qe,O(t+qe))+AdvivE
Π1

(qe,m,O(t)).

Lemma 2 (Integrity Advantage of RDCT). Let Π̃ = RDCTH,E,Π1,Π2
be

as defined in Algorithm 2. Let A be a detAuth adversary on Π̃ that submits
at most qe encryption queries and qd decryption queries of at most m blocks in
total, and runs in time at most t. Then

AdvdetAuth
Π̃

(A) ≤ 3q2ϵ+
q

2τ − q
+AdvSPRP

E,E−1(q,O(t+ q))

where q = qe + qd.

Lemma 1 and 2 are proved in Appendices A and B, respectively.

Theorem 5 (DAE Advantage of RDCT). Let Π̃ = RDCTH,E,Π1,Π2 be as

defined in Algorithm 2. Let A be a DAE adversary on Π̃ that asks at most qe
encryption queries and qd decryption queries of at most m blocks in total and
runs in time at most t. Then, AdvDAE

Π̃
(A) is upper bounded by

AdvDAE
Π̃

(A) ≤ 6q2ϵ+
q2

22n
+

q

2τ − q
+2AdvSPRP

E,E−1(q,O(t+q))+AdvivE
Π (q,m,O(t))

where q = qe + qd.

The proof of Theorem 5 follows from Theorem 1 and the individual bounds
for the detPriv and detAuth security in Lemma 1 and 2. For small τ , the
security of RDCT depends on the leading term q

2τ−q mostly. At this point, it

is independent of ϵ. However, the provable security of DCT is O(q
2ϵ
2 + q2

22n +
qϵ·22n
2τ) [10]. For small τ , it depends on the leading term qϵ·22n

2τ mostly. So it
is related to not only q but ϵ. We will show how it affects when DCT and

RDCT are implemented with BRW hashing, that is, ϵ = O(m2

22n) [10]. Now the

provable securities of DCT and RDCT are O(q
2m2

22n + qm2

2τ) and O(q
2m2

22n + q
2τ−q)

respectively. For small τ , we focus only on qm2

2τ and q
2τ−q respectively. Note that

the security of DCT depends on the length of the query. However, the security
of RDCT is almost unaffected by how long adversaries make the query.

The attack to DCT only requires O(2v) queries with O(2u) blocks, where
v ≤ τ and u = τ − v. Compared with DCT, to break the integrity of RDCT,
adversaries have to make O(2τ) queries. Therefore, the minor change made by
RDCT improves the security of DCT without sacrificing efficiency.

22 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

7 Conclusions

In this paper, we find that DCT suffers from a small stretch problem similar
to that of GCM. Although the BRW polynomial function is more complicated
than GHASH, Ferguson’s linear modification technique still works. To obtain
a successful forgery of the DCT scheme, our attack must choose the length of
the message m and the number of queries q flexibly with trade-off mq = O(2τ)
for small τ . Both GCM and DCT use the Wegman-Carter [31, 32] framework
to perform authentication. If we replace the GHASH function in GCM with
KBRW, or use KBRW in Wegman-Carter MAC, our method still works.

To solve the above small stretch problem, we propose an improved scheme
named Robust DCT (RDCT) without sacrificing efficiency, improving the secu-
rity when τ is small. The security bound of RDCT is q = O(2τ), which demon-
strates that our enhancements are successful. Our fixing method is similar to
that of [1] to boost the security of GCM: XORing the result of the AXU func-
tion both before and after the blockcipher. The core of resulting RDCT actually
uses the UIV enciphering algorithm, which is one of the rugged pseudorandom
permutations suggested by Degabriele et al. [6].

References

1. Ashur, T., Dunkelman, O., Luykx, A.: Boosting Authenticated Encryption Ro-
bustness With Minimal Modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10403, pp. 3–33. Springer (2017). https://doi.org/10.1007/978-
3-319-63697-9 1, https://doi.org/10.1007/978-3-319-63697-9_1 19, 22

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treat-
ment of Symmetric Encryption. In: FOCS ’97. pp. 394–403. IEEE Computer
Society (1997). https://doi.org/10.1109/SFCS.1997.646128, https://doi.org/10.
1109/SFCS.1997.646128 5

3. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In: EUROCRYPT 2006. LNCS, vol. 4004,
pp. 409–426. Springer (2006). https://doi.org/10.1007/11761679 25, https://doi.
org/10.1007/11761679_25 26

4. Bernstein, D.J.: Polynomial evaluation and message authentication. URL:
https://cr.yp.to/antiforgery/pema-20071022.pdf. Citations in this document 2
(2007) 2, 3

5. Chakraborty, D., Ghosh, S., Sarkar, P.: A Fast Single-Key Two-
Level Universal Hash Function. ToSC 2017(1), 106–128 (2017).
https://doi.org/10.13154/tosc.v2017.i1.106-128, https://doi.org/10.13154/

tosc.v2017.i1.106-128 3
6. Degabriele, J.P., Karadzic, V.: Overloading the Nonce: Rugged PRPs, Nonce-

Set AEAD, and Order-Resilient Channels. In: Dodis, Y., Shrimpton, T.
(eds.) CRYPTO 2022. LNCS, vol. 13510, pp. 264–295. Springer (2022).
https://doi.org/10.1007/978-3-031-15985-5 10, https://doi.org/10.1007/

978-3-031-15985-5_10 2, 19, 22
7. Dworkin, M.J.: SP 800-38D. Recommendation for Block Cipher Modes of Opera-

tion: Galois/Counter Mode (GCM) and GMAC. NIST (2007) 2

https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.13154/tosc.v2017.i1.106-128
https://doi.org/10.13154/tosc.v2017.i1.106-128
https://doi.org/10.13154/tosc.v2017.i1.106-128
https://doi.org/10.1007/978-3-031-15985-5_10
https://doi.org/10.1007/978-3-031-15985-5_10
https://doi.org/10.1007/978-3-031-15985-5_10

Small Stretch Problem of the DCT Scheme and How to Fix it 23

8. Ferguson, N.: Collision attacks on OCB. Comments submitted to NIST Modes of
Operation Process pp. 1–13 (2002) 2

9. Ferguson, N.: Authentication weaknesses in GCM. Comments submitted to NIST
Modes of Operation Process pp. 1–19 (2005) 2, 3, 7, 18, 19

10. Forler, C., List, E., Lucks, S., Wenzel, J.: Efficient Beyond-Birthday-Bound-Secure
Deterministic Authenticated Encryption with Minimal Stretch. In: ACISP 2016.
LNCS, vol. 9723, pp. 317–332. Springer (2016). https://doi.org/10.1007/978-3-319-
40367-0 20, https://doi.org/10.1007/978-3-319-40367-0_20 2, 3, 8, 9, 11, 19,
21

11. Ghosh, S., Sarkar, P.: Evaluating Bernstein-Rabin-Winograd Polynomials. DCC
87(2-3), 527–546 (2019). https://doi.org/10.1007/s10623-018-0561-7, https://

doi.org/10.1007/s10623-018-0561-7 3
12. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Specification and Analysis.

Cryptology ePrint Archive (2017) 2
13. Gueron, S., Lindell, Y.: GCM-SIV: Full Nonce Misuse-Resistant Authenticated

Encryption at Under One Cycle per Byte. In: CCS. pp. 109–119 (2015) 2
14. Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. In: CT-RSA 2004.

LNCS, vol. 2964, pp. 292–304. Springer (2004). https://doi.org/10.1007/978-3-540-
24660-2 23, https://doi.org/10.1007/978-3-540-24660-2_23 26

15. Impagliazzo, R., Rudich, S.: Limits on the Provable Consequences of
One-way Permutations. In: CRYPTO ’88. LNCS, vol. 403, pp. 8–26.
Springer (1988). https://doi.org/10.1007/0-387-34799-2 2, https://doi.org/10.
1007/0-387-34799-2_2 26

16. ISO, IEC: ISO/IEC 19772:2020 Information security — Authenticated encryption.
ISO (2020) 2

17. Iwata, T., Yasuda, K.: BTM: A Single-Key, Inverse-Cipher-Free Mode for De-
terministic Authenticated Encryption. In: SAC 2009. LNCS, vol. 5867, pp.
313–330. Springer (2009). https://doi.org/10.1007/978-3-642-05445-7 20, https:
//doi.org/10.1007/978-3-642-05445-7_20 2

18. Iwata, T., Yasuda, K.: HBS: A Single-Key Mode of Operation for Deter-
ministic Authenticated Encryption. In: FSE 2009. LNCS, vol. 5665, pp. 394–
415. Springer (2009). https://doi.org/10.1007/978-3-642-03317-9 24, https://

doi.org/10.1007/978-3-642-03317-9_24 2
19. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: Deoxys v1. 41. Submitted to CAESAR

124 (2016) 2
20. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable Block Ciphers. In: CRYPTO

2002. LNCS, vol. 2442, pp. 31–46. Springer (2002). https://doi.org/10.1007/3-540-
45708-9 3, https://doi.org/10.1007/3-540-45708-9_3 24, 27

21. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Indocrypt 2004. pp. 343–355. Springer (2004) 2

22. Minematsu, K.: Authenticated Encryption with Small Stretch (or, How to Accel-
erate AERO). In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp.
347–362. Springer (2016). https://doi.org/10.1007/978-3-319-40367-0 22, https:
//doi.org/10.1007/978-3-319-40367-0_22 2

23. Peyrin, T., Seurin, Y.: Counter-in-Tweak: Authenticated Encryption Modes for
Tweakable Block Ciphers. In: CRYPTO 2016. LNCS, vol. 9814, pp. 33–63. Springer
(2016). https://doi.org/10.1007/978-3-662-53018-4 2, https://doi.org/10.1007/
978-3-662-53018-4_2 2

24. Rabin, M.O., Winograd, S.: Fast Evaluation of Polynomials by Rational Prepara-
tion. CPAM 25(4), 433–458 (1972) 3

https://doi.org/10.1007/978-3-319-40367-0_20
https://doi.org/10.1007/978-3-319-40367-0_20
https://doi.org/10.1007/978-3-319-40367-0_20
https://doi.org/10.1007/s10623-018-0561-7
https://doi.org/10.1007/s10623-018-0561-7
https://doi.org/10.1007/s10623-018-0561-7
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-642-05445-7_20
https://doi.org/10.1007/978-3-642-05445-7_20
https://doi.org/10.1007/978-3-642-05445-7_20
https://doi.org/10.1007/978-3-642-03317-9_24
https://doi.org/10.1007/978-3-642-03317-9_24
https://doi.org/10.1007/978-3-642-03317-9_24
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-319-40367-0_22
https://doi.org/10.1007/978-3-319-40367-0_22
https://doi.org/10.1007/978-3-319-40367-0_22
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-662-53018-4_2

24 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

25. Rogaway, P.: Nonce-Based Symmetric Encryption. In: FSE 2004. LNCS,
vol. 3017, pp. 348–359. Springer (2004). https://doi.org/10.1007/978-3-540-25937-
4 22, https://doi.org/10.1007/978-3-540-25937-4_22 1

26. Rogaway, P., Bellare, M., Black, J.: OCB: A Block-Cipher Mode of Op-
eration for Efficient Authenticated Encryption. ACM TISS 6(3), 365–
403 (2003). https://doi.org/10.1145/937527.937529, https://doi.org/10.1145/

937527.937529 2
27. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap

Problem. In: EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer (2006).
https://doi.org/10.1007/11761679 23, https://doi.org/10.1007/11761679_23 2,
8, 9

28. Rogaway, P., Shrimpton, T.: Deterministic Authenticated-Encryption: A Provable-
Security Treatment of the Key-Wrap Problem. Cryptology ePrint Archive, Paper
2006/221 (2006), https://eprint.iacr.org/2006/221, https://eprint.iacr.

org/2006/221 9
29. Sarkar, P.: Efficient Tweakable Enciphering Schemes from (Block-

Wise) Universal Hash Functions. IEEE TIT 55(10), 4749–4760 (2009).
https://doi.org/10.1109/TIT.2009.2027487, https://doi.org/10.1109/TIT.

2009.2027487 3
30. Sarkar, P.: Tweakable Enciphering Schemes Using Only the Encryption Function

of a Block Cipher. Information Processing Letters 111(19), 945–955 (2011) 3
31. Shoup, V.: On Fast and Provably Secure Message Authentication Based on Uni-

versal Hashing. In: Koblitz, N. (ed.) CRYPTO ’96. Lecture Notes in Computer
Science, vol. 1109, pp. 313–328. Springer (1996). https://doi.org/10.1007/3-540-
68697-5 24, https://doi.org/10.1007/3-540-68697-5_24 22

32. Wegman, M.N., Carter, L.: New Hash Functions and Their Use in
Authentication and Set Equality. J. Comput. Syst. Sci. 22(3), 265–
279 (1981). https://doi.org/10.1016/0022-0000(81)90033-7, https://doi.org/10.
1016/0022-0000(81)90033-7 22

A Proof of Lemma 1

Proof. Let P̃erm (X ,Y) be a set of all tweakable random permutations on do-

main/range space Y with tweak space X , and let F̃unc (X ,Y) be a set of all
tweakable random functions on domain/range space Y with tweak space X . We
prove it by the game-playing technique. The games are in Table 2.

G0: This is the detPriv encryption oracle for the RDCT construction.

G1: In the game G1, we replace the tweakable blockcipher Ẽ in Equation (8)

with a tweakable random permutation π̃
$← P̃erm(A×MR,ML). We bound A’s

distinguishing advantage between games G0 and G1 by constructing an TPRP
adversary A1 of Ẽ, where A1 submits at most qe queries to its oracles and runs
in time O(t):∣∣Pr [AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]∣∣ ≤ AdvTPRP
Ẽ

(qe,O(t)). (9)

Liskov et al. [20] have proved the STPRP adversary of Ẽ is bounded by an SPRP
adversary A2 of E that submits at most q queries to its oracles and runs in time

https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1145/937527.937529
https://doi.org/10.1145/937527.937529
https://doi.org/10.1145/937527.937529
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://eprint.iacr.org/2006/221
https://eprint.iacr.org/2006/221
https://eprint.iacr.org/2006/221
https://doi.org/10.1109/TIT.2009.2027487
https://doi.org/10.1109/TIT.2009.2027487
https://doi.org/10.1109/TIT.2009.2027487
https://doi.org/10.1007/3-540-68697-5_24
https://doi.org/10.1007/3-540-68697-5_24
https://doi.org/10.1007/3-540-68697-5_24
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7

Small Stretch Problem of the DCT Scheme and How to Fix it 25

Table 2. Games G0-G5.

initialize G0 initialize G1

K1
$← K1;K2

$← K2;K3
$← K3;K4

$← K4 π̃
$← P̃erm (A×MR,ML) ;K4

$← K4

X ← ∅ X ← ∅

oracle Enc(A,M) oracle Enc(A,M)
if (A,M) ∈ X then if (A,M) ∈ X then

return ⊥ return ⊥
(ML,MR)← Encodeτ (M) (ML,MR)← Encodeτ (M)
CL ← EK3

(
ML ⊕HK1∥K2

(A,MR)
)

CL ← π̃((A,MR),ML)
⊕HK1∥K2

(A,MR) CR ← EK4 (CL,MR)
CR ← EK4 (CL,MR) X ← X ∪ {(A,M)}
X ← X ∪ {(A,M)} return (CL∥CR)
return (CL∥CR)

initialize G2 initialize G3

ρ
$← F̃unc (A×MR,ML) ρ

$← F̃unc (A×MR,ML)

K4
$← K4 ρ

′ $← F̃unc
(
{0, 1}2n,MR

)
X ← ∅ X ← ∅

oracle Enc(A,M) oracle Enc(A,M)
if (A,M) ∈ X then if (A,M) ∈ X then

return ⊥ return ⊥
(ML,MR)← Encodeτ (M) (ML,MR)← Encodeτ (M)
CL ← ρ((A,MR),ML) CL ← ρ((A,MR),ML)

CR ← EK4 (CL,MR) CR ← ρ
′
(CL,MR)

X ← X ∪ {(A,M)} X ← X ∪ {(A,M)}
return (CL∥CR) return (CL∥CR)

initialize G4 initialize G5

ρ
$← F̃unc (A×MR,ML) X ← ∅

ρ
′ $← F̃unc

(
{0, 1}2n,MR

)
X ← ∅, Y ← ∅ oracle Enc(A,M)

if (A,M) ∈ X then
oracle Enc(A,M) return ⊥
if (A,M) ∈ X then (CL∥CR)

$← {0, 1}τ+|M|

return ⊥ X ← X ∪ {(A,M)}
(ML,MR)← Encodeτ (M) return (CL∥CR)
CL ← ρ((A,MR),ML)

CR ← ρ
′
(CL,MR)

if (CL,MR) ∈ Y then

CR
$← {0, 1}|MR|

X ← X ∪ {(A,M)}
Y ← Y ∪ {(CL,MR)}
return (CL∥CR)

26 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

O(t+ q), plus a term 3q2ϵ from the ϵ-AXU hash function:

AdvSTPRP
Ẽ,Ẽ−1 (q,O(t)) ≤ AdvSPRP

E,E−1(q,O(t+ q)) + 3q2ϵ,

where q is the whole number of queries to Ẽ and Ẽ−1. Thus, it is easy to obtain

AdvTPRP
Ẽ

(qe,O(t)) ≤ AdvPRP
E,E−1(qe,O(t+ qe)) + 3q2eϵ (10)

holds as well.

G2: In the game G2, we replace the tweakable random permutation π̃ with

a tweakable random function ρ
$← F̃unc (A×MR,ML). We bound A’s dis-

tinguishing advantage between games G1 and G2 by TPRP-TPRF switching
lemma [14]: ∣∣Pr [AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]∣∣ ≤ qe(qe − 1)

22n+1
. (11)

G3: In the game G3, we replace the IV-based encryption algorithm E with a

tweakable random function ρ
′ $← F̃unc

(
{0, 1}2n,MR

)
. We bound A’s distin-

guishing advantage between games G2 and G3 by constructing an IV-based
encryption scheme adversary A3, where A3 submits at most qe queries of at
most m blocks in total to its oracles and runs in time O(t):∣∣Pr [AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]∣∣ ≤ AdvivE
Π1

(qe,m,O(t)). (12)

G4: In the game G4, we sample CR for repeated tuple (CL,MR). There are two
possibilities in the game G3. In the first case, MR has not appeared before. Then
(CL,MR) will not repeat. In the other case, the probability of the repetition of
CL bounded by PRP-PRF switching lemma [3,15]. So∣∣Pr [AG3 ⇒ 1

]
− Pr

[
AG4 ⇒ 1

]∣∣ ≤ qe(qe − 1)

22n+1
. (13)

G5: This is the detPriv encryption oracle for $Ẽ . We show the gameG4 is equiv-

alent to the ideal world for $Ẽ in G5 by comparing the behaviors of both encryp-
tion oracles. By the assumption that the adversaries do not repeat queries, the
query tuple (A,M) is always unique. By injective encoding algorithm Encodeτ ,
the triple (A,ML,MR) is always unique as well. Let us focus on the encryption
queries in the game G4. Therefore CL is always uniformly random. As for the
right output CR, there are two possibilities. In the first case, tuple (CL,MR)
hasn’t been appeared before, and that makes ρ

′
(CL,MR) uniformly random. It

follows that CL be uniformly random. In the other case, CL will be sampled uni-
formly at random. Thus, the output (CL, CR) will always be uniformly random,
the same as it happens in the ideal world G5. So∣∣Pr [AG4 ⇒ 1

]
− Pr

[
AG5 ⇒ 1

]∣∣ = 0. (14)

Finally, by combining the inequalities (9) to (14) we obtain the lemma bound.
□

Small Stretch Problem of the DCT Scheme and How to Fix it 27

B Proof of Lemma 2

Table 3. Games G0-G1.

initialize G0 initialize G1

K1
$← K1;K2

$← K2;K3
$← K3;K4

$← K4 π̃
$← P̃erm (A×MR,ML) ;K4

$← K4

X ← ∅, Y ← ∅ X ← ∅, Y ← ∅, Z ← ∅

oracle Enc(A,M) oracle Enc(A,M)

if (A,M) ∈ X then if (A,M) ∈ X then

return ⊥ return ⊥
(ML,MR)← Encodeτ (M) (ML,MR)← Encodeτ (M)

CL ← EK3

(
ML ⊕HK1∥K2

(A,MR)
)

CL ← π̃((A,MR),ML)

⊕HK1∥K2
(A,MR) CR ← EK4 (CL,MR)

CR ← EK4 (CL,MR) X ← X ∪ {(A,M)}
X ← X ∪ {(A,M)} Y ← Y ∪ {(A,C)}
Y ← Y ∪ {(A,C)} return (CL∥CR)

return (CL∥CR)

oracle Dec(A,C) oracle Dec(A,C)

if (A,C) ∈ Y then if (A,C) ∈ Y then

return ⊥ return ⊥
(CL, CR)← C (CL, CR)← C

MR ← DK4 (CL, CR) MR ← DK4 (CL, CR)

ML ← E−1
K3

(
CL ⊕HK1∥K2

(A,MR)
)

ML ← π̃−1((A,MR), CL)

⊕HK1∥K2
(A,MR) Y ← Y ∪ {(A,C)}

Y ← Y ∪ {(A,C)} return Decodeτ (ML,MR)

return Decodeτ (ML,MR)

Proof. We prove it by the game-playing technique. The games are in Table 3.

G0: This is the detAuth encryption scheme for the RDCT construction.

G1: In the game G1, we replace the tweakable blockcipher Ẽ with a tweakable

random permutation π̃
$← P̃erm(A ×MR,ML). We bound A’s distinguishing

advantage between games G0 and G1 by constructing an STPRP adversary A1

of Ẽ by [20]:∣∣Pr [AG0 forge
]
− Pr

[
AG1 forge

]∣∣ ≤ AdvSTPRP
Ẽ,Ẽ−1 (q,O(t))

≤ AdvSPRP
E,E−1(q,O(t+ q)) + 3q2ϵ.

(15)

28 Y. Chen, T. Guo, L. Hu, L. Shang, S. Mao and P. Wang

It remains to bound the upper bound of Pr
[
AG1 forge

]
. Let sets Z,U records

all (A,CL, CR), ((A,MR), CL) respectively about Enc queries and Dec queries.
Let ∗ denote any bit string. For a new decryption query (A,C) /∈ Y, there are
three possibilities about (A,CL, CR).

1. (A, ∗, ∗) has not been appeared in Z. Then ((A,MR), CL) has not been
appeared in U ;

2. (∗, CL, ∗) has not been appeared in Z. Then ((A,MR), CL) has not been
appeared in U ;

3. (∗, ∗, CR) has not been appeared in Z. There are two possibilities. In the
first case, (∗, CL, ∗) has not been appeared in Z. Then ((A,MR), CL) has
not been appeared in U ; In the other case, (∗, CL, ∗) have been appeared
in Z. We assume it is (∗, CL, C

′
R) where C ′

R ̸= CR. Then M ′
R ̸= MR. So

((A,MR), CL) has not been appeared in U as well.

Therefore, the inputs of π̃−1: ((A,MR), CL) always don’t repeat. By the STPRP
security of π̃,

Pr
[
AG1 forge

]
≤ 22n−τ

22n − qe
+

22n−τ

22n − qe − 1
+ · · ·+ 22n−τ

22n − qe − qd + 1

≤ 22n−τqd
22n − q

≤ q

2τ − q
22n−τ

≤ q

2τ − q
.

(16)

Finally, by combining the inequalities (15) to (16) we obtain the lemma
bound. □

	Small Stretch Problem of the DCT Scheme and How to Fix it

