10 research outputs found

    Early Adopter or Follower? The Strategic Equilibrium of Blockchain Technology Adoption Strategy for Competing Agri-Food Supply Chains

    No full text
    Despite the touting value of blockchain technology (BT), many agri-food supply chains are still struggling to the adoption of it. In this article, incorporating the benefit and cost associated with BT, we seek to answer whether and under what conditions can two competing agri-food supply chains benefit from the adoption of BT, and how government choose optimal subsidy scheme to promote the adoption of BT. The findings suggest that the Nash equilibrium outcome toward BT adoption strategy will be greatly affected by key parameters, such as competitive intensity, the growth rate of the market size and the investment cost with the adoption of BT, and the planting cost of the agri-food. Specifically, early adopter can always snatch more benefit from the adoption of the BT than the follower, and the gap between them will be increased in the competition intensity. In addition, the decisions selected by agri-food supply chains does not always benefit the consumer surplus and the social welfare, which call for further government subsidy scheme to promote the adoption of BT. The findings provide important implications for both the industrial managers and policy makers on how to benefit from BT in the digital transformation era.</p

    Discovery of Muscle-Tendon Progenitor Subpopulation in Human Myotendinous Junction at Single-Cell Resolution

    No full text
    The myotendinous junction (MTJ) is a complex and special anatomical area that connects muscles and tendons, and it is also the key to repairing tendons. Nevertheless, the anatomical structure and connection structure of MTJ, the cluster and distribution of cells, and which cells are involved in repairing the tissue are still unclear. Here, we analyzed the cell subtype distribution and function of human MTJ at single-cell level. We identified four main subtypes, including stem cell, muscle, tendon, and muscle-tendon progenitor cells (MTP). The MTP subpopulation, which remains the characteristics of stem cells and also expresses muscle and tendon marker genes simultaneously, may have the potential for bidirectional differentiation. We also found the muscle-tendon progenitor cells were distributed in the shape of a transparent goblet; muscle cells first connect to the MTP and then to the tendon. And after being transplanted in the MTJ injury model, MTP exhibited strong regenerative capability. Finally, we also demonstrated the importance of mTOR signaling for MTP maintenance by in vitro addition of rapamycin and in vivo validation using mTOR-ko mice. Our research conducted a comprehensive analysis of the heterogeneity of myotendinous junction, discovered a special cluster called MTP, provided new insights into the biological significance of myotendinous junction, and laid the foundation for future research on myotendinous junction regeneration and restoration

    Pin1/YAP pathway mediates matrix stiffness‐induced epithelial–mesenchymal transition driving cervical cancer metastasis via a non‐Hippo mechanism

    No full text
    Abstract Cervical cancer metastasis is an important cause of death in cervical cancer. Previous studies have shown that epithelial–mesenchymal transition (EMT) of tumors promotes its invasive and metastatic capacity. Alterations in the extracellular matrix (ECM) and mechanical signaling are closely associated with cancer cell metastasis. However, it is unclear how matrix stiffness as an independent cue triggers EMT and promotes cervical cancer metastasis. Using collagen‐coated polyacrylamide hydrogel models and animal models, we investigated the effect of matrix stiffness on EMT and metastasis in cervical cancer. Our data showed that high matrix stiffness promotes EMT and migration of cervical cancer hela cell lines in vitro and in vivo. Notably, we found that matrix stiffness regulates yes‐associated protein (YAP) activity via PPIase non‐mitotic a‐interaction 1 (Pin1) with a non‐Hippo mechanism. These data indicate that matrix stiffness of the tumor microenvironment positively regulates EMT in cervical cancer through the Pin1/YAP pathway, and this study deepens our understanding of cervical cancer biomechanics and may provide new ideas for the treatment of cervical cancer

    Performance of a superamphiphobic self-cleaning passive subambient daytime radiative cooling coating on grain and oil storage structures

    No full text
    The thermal performance of a novel exterior coating material for commonly used grain and food-grain oil structures was investigated. Grain structures included a concrete squat silo and a concrete warehouse while the edible oil structure was a concrete sided tank. The exterior coating provided excellent moisture runoff and solar reflectance properties and is best described as a superamphiphobic self-cleaning passive subambient daytime radiative cooling (SSC-PSDRC) coating. The coating exhibited a remarkable subambient daytime cooling effect in various structures in different climatic regions. Compared with the roof surface temperatures of a cool white-coated concrete grain silo and a gray carbon iron-based edible oil storage tank, those of the PSDRC coated top surfaces could be reduced by 37 °C and 33 °C, respectively. The roof surface temperature of a warehouse painted with a cool-white coating—with a solar reflectance of 0.9 and an emissivity of 0.85—and that of a warehouse with the roof installed with aluminised polymer waterproof membranes were 19 °C and 18 °C higher than that of the PSDRC warehouse, respectively. Consequently, the interior temperature of the wheat pile in the PSDRC grain silo was 10 °C lower than that in the control squat silo. With the inner loop flow temperature control system operating, the interior air temperatures of the PSDRC west-facing separate space were 6 °C and 3 °C higher than those of the cool-white coated and control west-facing separate spaces, respectively. Even after the application of PSDRC coating for only a few days, the interior air temperature of the PSDRC oil storage tank was reduced by 38 °C, and the interior temperature of the oil storage tank was reduced by 4 °C. Furthermore, in practical applications, the coating showed impressive superamphiphobic self-cleaning capabilities and super aging resistance. The wide applications of the coating would have far-reaching, global implications for maintaining grain and edible oil products, particularly in the sub-tropical climates

    Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile

    No full text
    Abstract Oncolytic viruses (OVs) represent a type of encouraging multi-mechanistic drug for the treatment of cancer. However, attenuation of virulence, which is generally required for the development of OVs based on pathogenic viral backbones, is frequently accompanied by a compromised killing effect on tumor cells. By exploiting the property of viruses to evolve and adapt in cancer cells, we perform directed natural evolution on refractory colorectal cancer cell HCT-116 and generate a next-generation oncolytic virus M1 (NGOVM) with an increase in the oncolytic effect of up to 9690-fold. The NGOVM has a broader antitumor spectrum and a more robust oncolytic effect in a range of solid tumors. Mechanistically, two critical mutations are identified in the E2 and nsP3 genes, which accelerate the entry of M1 virus by increasing its binding to the Mxra8 receptor and antagonize antiviral responses by inhibiting the activation of PKR and STAT1 in tumor cells, respectively. Importantly, the NGOVM is well tolerated in both rodents and nonhuman primates. This study implies that directed natural evolution is a generalizable approach for developing next-generation OVs with an expanded scope of application and high safety

    Observations of Forbush Decreases of Cosmic-Ray Electrons and Positrons with the Dark Matter Particle Explorer

    No full text
    The Forbush decrease (FD) represents the rapid decrease of the intensities of charged particles accompanied with the coronal mass ejections or high-speed streams from coronal holes. It has been mainly explored with the ground-based neutron monitor network, which indirectly measures the integrated intensities of all species of cosmic rays by counting secondary neutrons produced from interaction between atmospheric atoms and cosmic rays. The space-based experiments can resolve the species of particles but the energy ranges are limited by the relatively small acceptances except for the most abundant particles like protons and helium. Therefore, the FD of cosmic-ray electrons and positrons have just been investigated by the PAMELA experiment in the low-energy range (<5 GeV) with limited statistics. In this paper, we study the FD event that occurred in 2017 September with the electron and positron data recorded by the Dark Matter Particle Explorer. The evolution of the FDs from 2 GeV to 20 GeV with a time resolution of 6 hr are given. We observe two solar energetic particle events in the time profile of the intensity of cosmic rays, the earlier, and weaker, one has not been shown in the neutron monitor data. Furthermore, both the amplitude and recovery time of fluxes of electrons and positrons show clear energy dependence, which is important in probing the disturbances of the interplanetary environment by the coronal mass ejections
    corecore