3,707 research outputs found
Accelerated Variance Reduced Stochastic ADMM
Recently, many variance reduced stochastic alternating direction method of
multipliers (ADMM) methods (e.g.\ SAG-ADMM, SDCA-ADMM and SVRG-ADMM) have made
exciting progress such as linear convergence rates for strongly convex
problems. However, the best known convergence rate for general convex problems
is O(1/T) as opposed to O(1/T^2) of accelerated batch algorithms, where is
the number of iterations. Thus, there still remains a gap in convergence rates
between existing stochastic ADMM and batch algorithms. To bridge this gap, we
introduce the momentum acceleration trick for batch optimization into the
stochastic variance reduced gradient based ADMM (SVRG-ADMM), which leads to an
accelerated (ASVRG-ADMM) method. Then we design two different momentum term
update rules for strongly convex and general convex cases. We prove that
ASVRG-ADMM converges linearly for strongly convex problems. Besides having a
low per-iteration complexity as existing stochastic ADMM methods, ASVRG-ADMM
improves the convergence rate on general convex problems from O(1/T) to
O(1/T^2). Our experimental results show the effectiveness of ASVRG-ADMM.Comment: 16 pages, 5 figures, Appears in Proceedings of the 31th AAAI
Conference on Artificial Intelligence (AAAI), San Francisco, California, USA,
pp. 2287--2293, 201
Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization
The Schatten-p quasi-norm is usually used to replace the standard
nuclear norm in order to approximate the rank function more accurately.
However, existing Schatten-p quasi-norm minimization algorithms involve
singular value decomposition (SVD) or eigenvalue decomposition (EVD) in each
iteration, and thus may become very slow and impractical for large-scale
problems. In this paper, we first define two tractable Schatten quasi-norms,
i.e., the Frobenius/nuclear hybrid and bi-nuclear quasi-norms, and then prove
that they are in essence the Schatten-2/3 and 1/2 quasi-norms, respectively,
which lead to the design of very efficient algorithms that only need to update
two much smaller factor matrices. We also design two efficient proximal
alternating linearized minimization algorithms for solving representative
matrix completion problems. Finally, we provide the global convergence and
performance guarantees for our algorithms, which have better convergence
properties than existing algorithms. Experimental results on synthetic and
real-world data show that our algorithms are more accurate than the
state-of-the-art methods, and are orders of magnitude faster.Comment: 16 pages, 5 figures, Appears in Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI), Phoenix, Arizona, USA, pp.
2016--2022, 201
Inter-tier Interference Suppression in Heterogeneous Cloud Radio Access Networks
Incorporating cloud computing into heterogeneous networks, the heterogeneous
cloud radio access network (H-CRAN) has been proposed as a promising paradigm
to enhance both spectral and energy efficiencies. Developing interference
suppression strategies is critical for suppressing the inter-tier interference
between remote radio heads (RRHs) and a macro base station (MBS) in H-CRANs. In
this paper, inter-tier interference suppression techniques are considered in
the contexts of collaborative processing and cooperative radio resource
allocation (CRRA). In particular, interference collaboration (IC) and
beamforming (BF) are proposed to suppress the inter-tier interference, and
their corresponding performance is evaluated. Closed-form expressions for the
overall outage probabilities, system capacities, and average bit error rates
under these two schemes are derived. Furthermore, IC and BF based CRRA
optimization models are presented to maximize the RRH-accessed users' sum rates
via power allocation, which is solved with convex optimization. Simulation
results demonstrate that the derived expressions for these performance metrics
for IC and BF are accurate; and the relative performance between IC and BF
schemes depends on system parameters, such as the number of antennas at the
MBS, the number of RRHs, and the target signal-to-interference-plus-noise ratio
threshold. Furthermore, it is seen that the sum rates of IC and BF schemes
increase almost linearly with the transmit power threshold under the proposed
CRRA optimization solution
A condition-based opportunistic maintenance policy integrated with energy efficiency for two-component parallel systems
Purpose: In order to improve the energy utilization and achieve sustainable development, this paper integrates energy efficiency into condition-based maintenance(CBM) decision-making for two-component parallel systems. The objective is to obtain the optimal maintenance policy by minimizing total cost.
Design/methodology/approach: Based on energy efficiency, the paper considers the economic dependence between the two components to take opportunistic maintenance. Specifically, the objective function consists of traditional maintenance cost and energy cost incurred by energy consumption of components. In order to assess the performance of the proposed new maintenance policy, the paper uses Monte-Carlo method to evaluate the total cost and find the optimal maintenance policy.
Findings: Simulation results indicate that the new maintenance policy is superior to the classical condition-based opportunistic maintenance policy in terms of total economic costs.
Originality/value: For two-component parallel systems, previous researches usually simply establish a condition-based opportunistic maintenance model based on real deterioration data, but ignore energy consumption, energy efficiency (EE) and their contributions of sustainable development. This paper creatively takes energy efficiency into condition-based maintenance(CBM) decision-making process, and proposes a new condition-based opportunistic maintenance policy by using energy efficiency indicator(EEI).Peer Reviewe
Identification and analysis of divergent immune gene families within the Tasmanian devil genome
Background: The Tasmanian devil (Sarcophilus harrisii) is being threatened with extinction in the wild by a disease known as devil facial tumour disease (DFTD). In order to prevent the spread of this disease a thorough understanding of the Tasmanian devil immune system and its response to the disease is required. In 2011 and 2012 two genome sequencing projects of the Tasmania devil were released. This has provided us with the raw data required to begin to investigate the Tasmanian devil immunome in depth. In this study we characterise immune gene families of the Tasmanian devil. We focus on immunoglobulins, T cell receptors and cytokine families. Results: We identify and describe 119 cytokines including 40 interleukins, 39 chemokines, 8 interferons, 18 tumour necrosis family cytokines and 14 additional cytokines. Constant regions for immunoglobulins and T cell receptors were also identified. The repertoire of genes in these families was similar to the opossum, however devil specific duplications were seen and orthologs to eutherian genes not previously identified in any marsupial were also identified. Conclusions: By using multiple data sources as well as targeted search methods, highly divergent genes across the Tasmanian devil immune system were identified and characterised. This understanding will allow for the development of devil specific assays and reagents and allow for future studies into the immune response of the Tasmanian devil immune system to DFTD
- …
