58 research outputs found

    ZJU ReLER Submission for EPIC-KITCHEN Challenge 2023: Semi-Supervised Video Object Segmentation

    Full text link
    The Associating Objects with Transformers (AOT) framework has exhibited exceptional performance in a wide range of complex scenarios for video object segmentation. In this study, we introduce MSDeAOT, a variant of the AOT series that incorporates transformers at multiple feature scales. Leveraging the hierarchical Gated Propagation Module (GPM), MSDeAOT efficiently propagates object masks from previous frames to the current frame using a feature scale with a stride of 16. Additionally, we employ GPM in a more refined feature scale with a stride of 8, leading to improved accuracy in detecting and tracking small objects. Through the implementation of test-time augmentations and model ensemble techniques, we achieve the top-ranking position in the EPIC-KITCHEN VISOR Semi-supervised Video Object Segmentation Challenge.Comment: Top 1 solution for EPIC-KITCHEN Challenge 2023: Semi-Supervised Video Object Segmentatio

    ZJU ReLER Submission for EPIC-KITCHEN Challenge 2023: TREK-150 Single Object Tracking

    Full text link
    The Associating Objects with Transformers (AOT) framework has exhibited exceptional performance in a wide range of complex scenarios for video object tracking and segmentation. In this study, we convert the bounding boxes to masks in reference frames with the help of the Segment Anything Model (SAM) and Alpha-Refine, and then propagate the masks to the current frame, transforming the task from Video Object Tracking (VOT) to video object segmentation (VOS). Furthermore, we introduce MSDeAOT, a variant of the AOT series that incorporates transformers at multiple feature scales. MSDeAOT efficiently propagates object masks from previous frames to the current frame using two feature scales of 16 and 8. As a testament to the effectiveness of our design, we achieved the 1st place in the EPIC-KITCHENS TREK-150 Object Tracking Challenge.Comment: Top 1 solution for EPIC-KITCHEN Challenge 2023: TREK-150 Single Object Tracking. arXiv admin note: text overlap with arXiv:2307.0201

    Sp1 is Involved in Vertebrate LC-PUFA Biosynthesis by Upregulating the Expression of Liver Desaturase and Elongase Genes

    Get PDF
    The rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability for the biosynthesis of long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and all the catalytic enzymes including two fatty acyl desaturase 2 (Δ4 Fads2 and Δ6/Δ5 Fads2) and two elongases (Elovl4 and Elovl5) have been identified, providing a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in fish. Stimulatory protein 1 (Sp1) has been speculated to be a vital transcription factor in determining the promoter activity of Fads-like genes in fish, however its regulatory effects on gene expression and LC-PUFA biosynthesis have not been demonstrated. Bioinformatic analysis predicted potential Sp1 binding sites in the promoters of the rabbitfish Δ6/Δ5 fads2 and elovl5, but not in Δ4 fads2 promoter. Here we cloned full-length cDNA of the rabbitfish sp1 gene, which encoded a putative protein of 701 amino acids, and was expressed in all tissues studied with highest levels in gill and eyes. The dual luciferase reporter assay in HepG2 line cells demonstrated the importance of the Sp1 binding site for the promoter activities of both Δ6/Δ5 fads2 and elovl5. Moreover, the electrophoretic mobility shift assay confirmed the direct interaction of Sp1 with the two promoters. Insertion of the Sp1 binding site of Δ6/Δ5 fads2 promoter into the corresponding region of the Δ4 fads2 promoter significantly increased activity of the latter. In the Siganus canaliculatus hepatocyte line (SCHL) cells, mRNA levels of Δ6/Δ5 fads2 and elovl5 were positively correlated with the expression of sp1 when sp1 was overexpressed or knocked-down by RNAi or antagonist (mithramycin) treatment. Moreover, overexpression of sp1 also led to a higher conversion of 18:2n−6 to 18:3n−6, 18:2n−6 to 20:2n−6, and 18:3n−3 to 20:3n−3, which related to the functions of Δ6/Δ5 Fads2 and Elovl5, respectively. These results indicated that Sp1 is involved in the transcriptional regulation of LC-PUFA biosynthesis by directly targeting Δ6/Δ5 fads2 and elovl5 in rabbitfish, which is the first report of Sp1 involvement in the regulation of LC-PUFA biosynthesis in vertebrates

    Cloning and characterization of ∆6/∆5 fatty acyl desaturase (Fad) gene promoter in the marine teleost Siganus canaliculatus

    Get PDF
    The rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and all genes encoding the key enzymes for LC-PUFA biosynthesis have been cloned and functionally characterized, which provides us a potential model to study the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. As the primary step to clarify such mechanisms, present research focused on promoter analysis of gene encoding ∆6/∆5 fatty acyl desaturase (Fad), a rate-limiting enzyme catalyzing the first step in the conversion of C18 PUFA to LC-PUFA. First, 2044 bp promoter sequence was cloned by genome walking, and the sequence from -456 bp to + 51bp was determined as core promoter by progressive deletion mutation. Moreover, binding sites of transcription factors (TF) such as CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), stimulatory protein 1 (Sp1), nuclear factor Y (NF-Y), activated protein 1 (AP1), sterol regulatory element (SRE), hepatocyte nuclear factor 4α (HNF4α) and peroxisome proliferator activated receptor γ (PPARγ) were identified in the core promoter by site-directed mutation and functional assays. Moreover, NF-1 and HNF4α were confirmed to interact with the core promoter region by gel shift assay and mass spectrometry. This is the first report of the promoter structure of a ∆6/∆5 Fad in a marine teleost, and a novel discovery of NF-1 and HNF4α binding to the ∆6/∆5 Fad promoter

    miR-24 is involved in vertebrate LC-PUFA biosynthesis as demonstrated in marine teleost Siganus canaliculatus

    Get PDF
    Recently, microRNAs (miRNAs) have emerged as crucial regulators of lipid metabolism. However, the miRNA-mediated regulatory mechanism on long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) biosynthesis in vertebrates remains largely unknown. Here, we address a potentially important role of miRNA-24 (miR-24) in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. miR-24 showed significantly higher abundance in liver of rabbitfish reared in brackish water than in seawater for fish fed vegetable oil diets and in S. canaliculatus hepatocyte line (SCHL) cells incubated with alpha-linolenic acid (ALA) than the control group. Similar expression patterns were also observed on the expression of sterol regulatory element-binding protein-1 (srebp1) and LC-PUFA biosynthesis related genes. While opposite results were observed on the expression of insulin-induced gene 1 (insig1), an endoplasmic reticulum membrane protein blocking Srebp1 proteolytic activation. Luciferase reporter assays revealed rabbitfish insig1 as a target of miR-24. Knockdown of miR-24 in SCHL cells resulted in increased Insig1 protein, and subsequently reduced mature Srebp1 protein and expression of genes required for LC-PUFA biosynthesis, and these effects could be attenuated after additional insig1 knockdown. Opposite results were observed with overexpression of miR-24. Moreover, increasing endogenous insig1 by knockdown of miR-24 inhibited Srebp1 processing and consequently suppressed LC-PUFA biosynthesis in rabbitfish hepatocytes. These results indicate a potentially critical role for miR-24 in regulating LC-PUFA biosynthesis through the Insig1/Srebp1 pathway by targeting insig1. This is the first report of miR-24 involved in LC-PUFA biosynthesis and thus may provide knowledge on the regulatory mechanisms of LC-PUFA biosynthesis in vertebrates

    Genome wide identification and functional characterization of two LC-PUFA biosynthesis elongase (elovl8) genes in rabbitfish (Siganus canaliculatus)

    Get PDF
    Elongases of very long-chain fatty acids (Elovls) catalyze the rate-limiting step of the elongation pathway that results in net 2‑carbon elongation of pre-existing fatty acyl chains. As a set of crucial enzymes involved in the long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis, Elovls of fish have been investigated extensively in recent years. In the present study, we first identified two novel fish-specific elovl genes (named as elovl8a and elovl8b) from the herbivorous marine teleost rabbitfish (Siganus canaliculatus) by genomic survey and molecular cloning methods. Subsequently, their functional characteristics, tissue distribution patterns and transcriptional changes in response to different nutritional states were investigated. Full-length coding sequences of the elovl8a and elovl8b genes were 804 and 792 bp, encoding 267 and 263 amino acids, respectively. Multiple alignment, genomic synteny and phylogenetic analyses further suggested that elovl8 genes were unique to teleosts. Functional characterization by heterologous expression in yeast showed that Elovl8b could elongate C18 (18:2n-6, 18:3n-3 and 18:4n-3) and C20 (20:4n-6 and 20:5n-3) polyunsaturated fatty acids (PUFA) to longer-chain polyunsaturated fatty acids (LC-PUFA) whereas Elovl8a lacked this ability. In vitro, the expression of elovl8b but not elovl8a in rabbitfish hepatocytes was significantly up-regulated by incubation with 18:2n-6, 18:3n-3, 20:4n-6 and 20:5n-3, respectively. In vivo, compared with fish oil, dietary vegetable oil enriched in C18 PUFA enhanced the expression of elovl8b in rabbitfish brain, liver, intestine and gill. These findings suggest that elovl8b but not elovl8a is a novel active member of the Elovl protein family involved in the LC-PUFA biosynthesis pathway in rabbitfish, and provide novel insight into the mechanisms of LC-PUFA biosynthesis in teleost

    The miR-15/16 Cluster Is Involved in the Regulation of Vertebrate LC-PUFA Biosynthesis by Targeting pparγ as Demonostrated in Rabbitfish Siganus canaliculatus

    Get PDF
    Post-transcriptional regulatory mechanisms play important roles in the regulation of long-chain (≥ C20) polyunsaturated fatty acid (LC-PUFA) biosynthesis. Here, we address a potentially important role of the miR-15/16 cluster in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. In rabbitfish, miR-15 and miR-16 were both highly responsive to fatty acids affecting LC-PUFA biosynthesis and displayed a similar expression pattern in a range of rabbitfish tissues. A common potential binding site for miR-15 and miR-16 was predicted in the 3′UTR of peroxisome proliferator-activated receptor gamma (pparγ), an inhibitor of LC-PUFA biosynthesis in rabbitfish, and luciferase reporter assays revealed that pparγ was a potential target of miR-15/16 cluster. In vitro individual or co-overexpression of miR-15 and miR-16 in rabbitfish hepatocyte line (SCHL) inhibited both mRNA and protein levels of Pparγ, and increased the mRNA levels of Δ6Δ5 fads2, Δ4 fads2, and elovl5, key enzymes of LC-PUFA biosynthesis. Inhibition of pparγ was more pronounced with co-overexpression of miR-15 and miR-16 than with individual overexpression in SCHL. Knockdown of miR-15/16 cluster gave opposite results, and increased mRNA levels of LC-PUFA biosynthesis enzymes were observed after knockdown of pparγ. Furthermore, miR-15/16 cluster overexpression significantly increased the contents of 22:6n-3, 20:4n-6 and total LC-PUFA in SCHL with higher 18:4n-3/18:3n-3 and 22:6n-3/22:5n-3 ratio. These suggested that miR-15 and miR-16 as a miRNA cluster together enhanced LC-PUFA biosynthesis by targeting pparγ in rabbitfish. This is the first report of the participation of miR-15/16 cluster in LC-PUFA biosynthesis in vertebrates

    Molecular epidemiology and clinical characteristics of respiratory syncytial virus in hospitalized children during winter 2021–2022 in Bengbu, China

    Get PDF
    ObjectiveThis study aimed to study the molecular epidemiology and clinical characteristics of respiratory syncytial virus (RSV) infection from hospitalized children with ARTI in Bengbu.MethodsOne hundred twenty-four nasopharyngeal swab specimens and clinical data from children with ARTI cases were collected in Bengbu, China, during winter 2021–2022. The samples were detected by qPCR of 13 respiratory viruses. Phylogenetic analysis was constructed using MEGA 7.0. All analyses were performed using SAS software, version 9.4.ResultsIn winter 2021–2022, URTI, NSCAP, SCAP, and bronchiolitis accounted for 41.03%, 27.35%, 17.09%, and 14.53% of hospitalized children in Bengbu, China. The detection rates of the top three were RSV (41.94%), ADV (5.65%), and FluB (5.65%) in hospitalized children through 13 virus detection. RSV is the main pathogen of hospitalized children under 2 years old. Forty-eight sequences of G protein of RSV were obtained through PCR amplification, including RSV-A 37 strains and RSV-B 11 strains. Phylogenetic analysis showed that all RSV-A and RSV-B were ON1 and BA9 genotypes, respectively. ON1 genotypes were further divided into two clades. The majority of ON1 strains formed a unique genetic clade with T113I, V131D, N178 G, and H258Q mutations. Furthermore, RSV infection was an independent risk factor for ventilator use (OR = 9.55, 95% CI 1.87–48.64).ConclusionThere was a high incidence of RSV among hospitalized children during winter 2021–2022 in Bengbu with ON1 and BA9 being the dominant strains. This study demonstrated the molecular epidemiological characteristics of RSV in children with respiratory infections in Bengbu, China
    • …
    corecore