33 research outputs found

    Genetic Diversity and Genetic Structure of Different Types of Natural Populations in Osmanthus fragrans

    Get PDF
    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of Ne, He, and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity

    Key residues in the nicotinic acetylcholine receptor β2 subunit contribute to α-conotoxin LvIA binding

    Get PDF
    alpha-Conotoxin LvIA (alpha-CTx LvIA) is a small peptide from the venom of the carnivorous marine gastropod Conus lividus and is the most selective inhibitor of alpha 3 beta 2 nicotinic acetylcholine receptors (nAChRs) known to date. It can distinguish the alpha 3 beta 2 nAChR subtype from the alpha 6 beta 2* (*indicates the other subunit) and alpha 3 beta 4 nAChR subtypes. In this study, we performed mutational studies to assess the influence of residues of the beta 2 subunit versus those of the beta 4 subunit on the binding of alpha-CTx LvIA. Although two beta 2 mutations, alpha 3 beta 2[F119Q] and alpha 3 beta 2[T59K], strongly enhanced the affinity of LvIA, the beta 2 mutation alpha 3 beta 2[V111I] substantially reduced the binding of LvIA. Increased activity of LvIA was also observed when the beta 2-T59L mutant was combined with the alpha 3 subunit. There were no significant difference in inhibition of alpha 3 beta 2[T59I], alpha 3 beta 2[Q34A], and alpha 3 beta 2[K79A] nAChRs when compared with wild-type alpha 3 beta 2 nAChR. alpha-CTx LvIA displayed slower off-rate kinetics at alpha 3 beta 2[F119Q] and alpha 3 beta 2[T59K] than at the wild-type receptor, with the latter mutant having the most pronounced effect. Taken together, these data provide evidence that the beta 2 subunit contributes to alpha-CTx LvIA binding and selectivity. The results demonstrate that Val(111) is critical and facilitates LvIA binding; this position has not previously been identified as important to binding of other 4/7 framework alpha-conotoxins. Thr(59) and Phe(119) of the beta 2 subunit appear to interfere with LvIA binding, and their replacement by the corresponding residues of the beta 4 subunit leads to increased affinity

    Characterization of a novel alpha-conotoxin TxID from Conus textile that potently blocks rat alpha3/beta4 nicotinic acetylcholine receptors

    Get PDF
    The alpha 3 beta 4 nAChRs are implicated in pain sensation in the PNS and addiction to nicotine in the CNS. We identified an alpha-4/6-conotoxin (CTx) TxID from Conus textile. The new toxin consists of 15 amino acid residues with two disulfide bonds. TxID was synthesized using solid phase methods, and the synthetic peptide was functionally tested on nAChRs heterologously expressed in Xenopus laevis oocytes. TxID blocked rat alpha 3 beta 4 nAChRs with a 12.5 nM IC50, which places it among the most potent alpha 3 beta 4 nAChR antagonists. TxID also blocked the closely related alpha 6/alpha 3 beta 4 with a 94 nM IC50 but showed little activity on other nAChR subtypes. NMR analysis showed that two major structural isomers exist in solution, one of which adopts a regular alpha-CTx fold but with different surface charge distribution to other 4/6 family members. alpha-CTx TxID is a novel tool with which to probe the structure and function of alpha 3 beta 4 nAChRs

    The Effect of Target Sex, Sexual Dimorphism, and Facial Attractiveness on Perceptions of Target Attractiveness and Trustworthiness

    No full text
    Facial sexual dimorphism has widely demonstrated as having an influence on the facial attractiveness and social interactions. However, earlier studies show inconsistent results on the effect of sexual dimorphism on facial attractiveness judgments. Previous studies suggest that the level of attractiveness might work as a moderating variable among the relationship between sexual dimorphism and facial preference and have often focused on the effect of sexual dimorphism on general attractiveness ratings, rather than concentrating on trustworthiness perception. Male and female participants viewed target male and female faces that varied on attractiveness (more attractive or less attractive) and sexual dimorphism (masculine or feminine). Participants rated the attractiveness of the faces and reported how much money they would give to the target person as a measure of trust. For the facial attractiveness ratings, (a) both men and women participants preferred masculine male faces to feminine male ones under the more attractive condition, whereas preferred feminine male faces to masculine male ones under the less attractive condition; (b) all participants preferred feminine female faces to masculine female ones under the less attractive condition, while there were no differences between feminine female faces and masculine female faces under the more attractive condition. For the target trustworthiness perception, (a) participants showed no preference between masculine male faces and feminine male faces, neither under the more attractive condition nor the less attractiveness condition; (b) however, all the participants preferred masculine female faces over feminine female faces under the more attractive condition, exhibiting no preference between feminine female faces and masculine female faces under the less attractive condition. These findings suggest that the attractiveness of facial stimulus may be a reason to interpret the inconsistent results from the previous studies, which focused on the effect of facial sexual dimorphism on the facial attractiveness. Furthermore, implications about the effect of target facial sexual dimorphism on participants’ trustworthiness perception were discussed

    From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR

    Get PDF
    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes

    A Novel α4/7-Conotoxin Lvia From Conus Lividus That Selectively Blocks α3β2 Vs. α6/α3β2β3 Nicotinic Acetylcholine Receptors

    No full text
    This study was performed to discover and characterize the first potent α3β2-subtype-selective nicotinic acetylcholine receptor (nAChR) ligand. A novel α4/7-conotoxin, α-CTxLvIA, was cloned from Conus lividus. Its pharmacological profile at Xenopus laevis oocyte-expressed rat nAChR subtypes was determined by 2-electrode voltage-clamp electrophysiology, and its 3-dimensional (3D) structure was determined by NMR spectroscopy. α-CTx LvIA is a 16-aa C-terminallyamidated peptide with 2-disulfide bridges. Using rat subunits expressed in Xenopus oocytes, we found the highest affinity of α-CTxLvIA was for α3β2 nAChRs (IC50 8.7 nM), where blockade was reversible within 2 min. IC50 values were \u3e100 nM at α6/α3β2β3, α6/ α3β4, and α3β4 nAChRs, and ≥3 μM at all other subtypes tested. α3β2 vs. α6β2 subtype selectivity was confirmed for human-subunit nAChRs with much greater preference (300-fold) for α3β2 over α6β2 nAChRs. This is the first α-CTx reported to show high selectivity for human α3β2 vs. α6β2 nAChRs. α-CTxLvIA adopts two similarly populated conformations water: one (assumed to be bioactive) is highly structured, whereas the other is mostly random coil in nature. Selectivity differences with the similarly potent, but less selective, α3β2 nAChR antagonist α-CTx PeIA probably reside within the three residues, which differ in loop 2, given their otherwise similar 3D structures. α4/7-CTx LvIA is a new, potent, selective α3β2 nAChR antagonist, which will enable detailed studies of α3β2 nAChR structure, function, and physiological roles. © FASEB
    corecore