42 research outputs found

    Inhibitory effect of reduced graphene oxide-silver nanocomposite on progression of artificial enamel caries

    Get PDF
    The use of antimicrobial agents is an efficient method to prevent dental caries. Also, nanometric antibacterial agents with wide antibacterial spectrum and strong antibacterial effects can be applied for prevention of dental caries. Objectives: The aim of this study was to evaluate the inhibitory effect of reduced graphene oxide-silver nanoparticles (rGO/Ag) composite on the progression of artificial enamel caries in a Streptococcus mutans biofilm model. Material and Methods: Enamel specimens from bovine incisors were divided into eight treatment groups (n=13), as follows: group 1 was inoculated with S. mutans grown in Brain Heart Infusion containing 1% sucrose (1% BHIS), as negative control; groups 2–4 were inoculated with S. mutans grown in the presence of different rGO/Ag concentrations (0.08, 0.12, 0.16 mg/mL) + 1% BHIS; group 5–7 were inoculated with S. mutans grown in the presence of different agents (0.16 mg/mL reduced graphene oxide, 0.16 mg/mL silver nanoparticles, 10 ppm NaF) + 1% BHIS; group 8 was mixed with 1% BHIS, without inoculation. Artificial enamel carious lesions were produced by S. mutans biofilm model for 7 days. Confocal laser scanning microscopy and atomic force microscopy were used to analyze roughness and morphology of the enamel surface. Polarized light microscopy and confocal laser scanning microscopy were employed to measure the lesion depth and the relative optical density (ROD) of the demineralized layer. Results: Compared with the control groups, the rGO/Ag groups showed: (a) reduced enamel surface roughness; (b) much smoother and less eroded surfaces; (c) shallower lesion depth and less mineral loss. Conclusion: As a novel composite material, rGO/Ag can be a promising antibacterial agent for caries prevention

    Nuclear Translocation of Jacob in Hippocampal Neurons after Stimuli Inducing Long-Term Potentiation but Not Long-Term Depression

    Get PDF
    Background: In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, there is a surprising paucity of data showing the nuclear import of such proteins in cellular models of learning and memory. Only recently it was found that the transcription factor cyclic AMP response element binding protein 2 (CREB2) transits to the nucleus during long-term depression (LTD), but not during long-term potentiation (LTP) of synaptic transmission in hippocampal primary neurons. Jacob is another messenger that couples NMDA-receptor-activity to nuclear gene expression. We therefore aimed to study whether Jacob accumulates in the nucleus in physiological relevant models of activity-dependent synaptic plasticity. Methodology/Principal Findings: We have analyzed the dynamics of Jacob’s nuclear import following induction of NMDA-receptor dependent LTP or LTD at Schaffer collateral-CA1 synapses in rat hippocampal slices. Using time-lapse imaging of neurons expressing a Jacob-Green-Fluorescent-Protein we found that Jacob rapidly translocates from dendrites to the nucleus already during the tetanization period of LTP, but not after induction of LTD. Immunocytochemical stainings confirmed the nuclear accumulation of endogenous Jacob in comparison to apical dendrites after induction of LTP but not LTD. Complementary findings were obtained after induction of NMDA-receptor dependent chemical LTP and LTD i

    Bearing Defect Classification Algorithm Based on Autoencoder Neural Network

    No full text
    The postproduction defect classification and detection of bearings still relies on manual detection, which is time-consuming and tedious. To address this, we propose a bearing defect classification network based on an autoencoder to enhance the efficiency and accuracy of bearing defect detection. An improved autoencoder is used to reduce dimension feature extraction and reduce large-scale images to small-scale images through encoder dimensional reduction. Defect classification is completed by feeding the extracted features into a convolutional classification network. Comparative experiments show that the neural network can effectively complete feature selection and substantially improve classification accuracy while avoiding the laborious algorithm of the conventional method

    A testing device for intrinsically safe multi-circuit protection power supply

    No full text
    In order to solve problems of inconvenient operation, complicated process and low accuracy of existing test methods of intrinsically safe power supply, a testing device for intrinsically safe multi- circuit protection power supply was designed. The device consists of adaptive voltage module and adaptive current module, control module, and has testing functions of intrinsically safe power supply and safety power supply module with 12, 18, 24 V power supply. Adaptive voltage module loads input power with rated voltage value to measured intrinsically safe power supply when tested voltage, output power end of measured intrinsically safe power supply is no-load, control module managements output voltage value of adaptive voltage module, and monitors output voltage of safety protection circuit at the corresponding levels is normal or not, so as to realize voltage testing at the corresponding levels; Adaptive voltage module loads input power with rated voltage value to measured intrinsically safe power supply when tested current, adaptive current module is loaded to output power end of measured intrinsically safe power supply, control module managements load current value of adaptive current module, and monitors output voltage of safety protection circuit at the corresponding levels is normal or not, so as to realize current testing at the corresponding levels; Control module can control switch ammong multiple protection circuit testing. The test results show that the device can automatically identify different voltage grade of intrinsically safe power supply, automatically load different power load, and can automatically warn and accurately analyze performance of the power supply, which implements automation and intellectualization of testing of intrinsically safe multi-circuit protection power supply

    Vertical Section Observation of the Solid Flow in a Blast Furnace with a Cutting Method

    No full text
    The solid flow plays an important role in blast furnace (BF) ironmaking. In the paper, the descending behavior of solid flow in BFs was investigated by a cold experimental BF model and numerical simulation via the discrete element method (DEM). To eliminate the flat wall effect on the structure of solid flow in lab observations, a cutting method was developed to observe the vertical section of the solid flow by inserting a transparent plate into the experimental BF model. Both the experimental and numerical results indicated that plug flow is the main solid flow pattern in the upper and middle zones of BFs during burden descending. Meanwhile, a slight convergence flow and a deadman zone form at the lower part of the bosh. In addition, the boundary between the plug flow and convergence flow in BFs was determined by analyzing the velocity of the burden in vertical directions and the Wilcox⁻Swailes coefficient (Uws). The results indicated that the Uws can be defined as a critical value to determine the solid flow patterns. When Uws ≥ 0.65, the plug flow is dominant. When Uws < 0.65, the convergence flow is dominant. The findings may have important implications to understand the structure of the solid flow in BFs

    A Probabilistic Statistical Method for the Determination of Void Morphology with CFD-DEM Approach

    No full text
    Voids that are formed by gas injection in a packed bed play an important role in metallurgical and chemical furnaces. Herein, two-phase gas–solid flow in a two-dimensional packed bed during blast injection was simulated numerically. The results indicate that the void stability was dynamic, and the void shape and size fluctuated within a certain range. To determine the void morphology quantitatively, a probabilistic method was proposed. By statistically analyzing the white probability of each pixel in binary images at multiple times, the void boundaries that correspond to different probability ranges were obtained. The boundary that was most appropriate with the simulation result was selected and defined as the well-matched void boundary. Based on this method, the morphologies of voids that formed at different gas velocities were simulated and compared. The method can help us to express the morphological characteristics of the dynamically stable voids in a numerical simulation

    Association between dietary sugar intake and depression in US adults: a cross-sectional study using data from the National Health and Nutrition Examination Survey 2011–2018

    No full text
    Abstract Background Studies examining whether diet sugar intake increases the risk of depression have produced inconsistent results. Therefore, we investigated this relationship, using the US’ National Health and Nutrition Examination Survey (NHANES) database. Methods This cross-sectional study included 18,439 adults (aged ≥ 20 years) from NHANES (2011–2018). Depressive symptoms were assessed using the nine-item version of the Patient Health Questionnaire (PHQ-9). Covariates, including age, sex, race/ethnicity, poverty-income ratio, education, marital status, hypertension, diabetes mellitus, cardiovascular disease, alcohol intake, smoking status, physical activity, and dietary energy intake, were adjusted in multivariate logistic regression models. Subgroup and threshold saturation effect analyses were performed. Results After adjusting for potential confounders, we found that a 100 g/day increase in dietary sugar intake correlated with a 28% higher prevalence of depression (odds ratio = 1.28, 95% confidence interval = 1.17–1.40, P < 0.001). Conclusion Dietary sugar intake is positively associated with depression in US adults

    Association between dietary caffeine intake and severe headache or migraine in US adults

    No full text
    Abstract The relationship between current dietary caffeine intake and severe headache or migraine is controversial. Therefore, we investigated the association between dietary caffeine intake and severe headaches or migraines among American adults. This cross-sectional study included 8993 adults (aged ≥ 20 years) with a dietary caffeine intake from the National Health and Nutrition Examination Surveys of America from 1999 to 2004. Covariates, including age, race/ethnicity, body mass index, poverty-income ratio, educational level, marital status, hypertension, cancer, energy intake, protein intake, calcium intake, magnesium intake, iron intake, sodium intake, alcohol status, smoking status, and triglycerides, were adjusted in multivariate logistic regression models. In US adults, after adjusting for potential confounders, a 100 mg/day increase in dietary caffeine intake was associated with a 5% increase in the prevalence of severe headache or migraine (odds ratio [OR] 1.05, 95% confidence interval [CI] 1.02–1.07). Further, the prevalence of severe headache or migraine was 42% higher with caffeine intake of ≥ 400 mg/day than with caffeine intake of ≥ 0 to < 40 mg/day (OR 1.42, 95% CI 1.16–1.75). Conclusively, dietary caffeine intake is positively associated with severe headaches or migraines in US adults

    Inhibitory effect of reduced graphene oxide-silver nanocomposite on progression of artificial enamel caries

    Get PDF
    Abstract The use of antimicrobial agents is an efficient method to prevent dental caries. Also, nanometric antibacterial agents with wide antibacterial spectrum and strong antibacterial effects can be applied for prevention of dental caries. Objectives: The aim of this study was to evaluate the inhibitory effect of reduced graphene oxide-silver nanoparticles (rGO/Ag) composite on the progression of artificial enamel caries in a Streptococcus mutans biofilm model. Material and Methods: Enamel specimens from bovine incisors were divided into eight treatment groups (n = 13), as follows: group 1 was inoculated with S. mutans grown in Brain Heart Infusion containing 1% sucrose (1% BHIS), as negative control; groups 2-4 were inoculated with S. mutans grown in the presence of different rGO/Ag concentrations (0.08, 0.12, 0.16 mg/mL) + 1% BHIS; group 5-7 were inoculated with S. mutans grown in the presence of different agents (0.16 mg/mL reduced graphene oxide, 0.16 mg/mL silver nanoparticles, 10 ppm NaF) + 1% BHIS; group 8 was mixed with 1% BHIS, without inoculation. Artificial enamel carious lesions were produced by S. mutans biofilm model for 7 days. Confocal laser scanning microscopy and atomic force microscopy were used to analyze roughness and morphology of the enamel surface. Polarized light microscopy and confocal laser scanning microscopy were employed to measure the lesion depth and the relative optical density (ROD) of the demineralized layer. Results: Compared with the control groups, the rGO/Ag groups showed: (a) reduced enamel surface roughness; (b) much smoother and less eroded surfaces; (c) shallower lesion depth and less mineral loss. Conclusion: As a novel composite material, rGO/Ag can be a promising antibacterial agent for caries prevention
    corecore